Skip to main content
Top
Published in: BMC Nephrology 1/2017

Open Access 01-12-2017 | Research article

Citrate shows protective effects on cardiovascular and renal function in ischemia-induced acute kidney injury

Authors: Anja Bienholz, Jonas Reis, Pinar Sanli, Herbert de Groot, Frank Petrat, Hana Guberina, Benjamin Wilde, Oliver Witzke, Fuat H. Saner, Andreas Kribben, Joel M. Weinberg, Thorsten Feldkamp

Published in: BMC Nephrology | Issue 1/2017

Login to get access

Abstract

Background

Ischemia and reperfusion (I/R) is one of the major causes of acute kidney injury (AKI). Citrate reduces hypoxia-induced mitochondrial energetic deficits in isolated proximal tubules. Moreover, citrate anticoagulation is now frequently used in renal replacement therapy. In the present study a rat model of I/R-induced AKI was utilized to examine renal protection by citrate in vivo.

Methods

AKI was induced by bilateral renal clamping (40 min) followed by reperfusion (3 h). Citrate was infused at three different concentrations (0.3 mmol/kg/h; 0.6 mmol/kg/h and 1.0 mmol/kg/h) continuously for 60 min before and 45 min after ischemia. Plasma calcium concentrations were kept stable by infusion of calcium gluconate. The effect of citrate was evaluated by biomonitoring, blood and plasma parameters, histopathology and tissue ATP content.

Results

In comparison to the normoxic control group bilateral renal ischemia led to an increase of creatinine and lactate dehydrogenase activity and a decrease in tissue ATP content and was accompanied by a drop in mean arterial blood pressure. Infusion of 1.0 mmol/kg/h citrate led to lower creatinine and reduced LDH activity compared to the I/R control group and a tendency for higher tissue ATP content. Pre-ischemic infusion of 1.0 mmol/kg/h citrate stabilized blood pressure during ischemia.

Conclusions

Citrate has a protective effect during I/R-induced AKI, possibly by limiting the mitochondrial deficit as well as by beneficial cardiovascular effects. This strengthens the rationale of using citrate in continuous renal replacement therapy and encourages consideration of citrate infusion as a therapeutic treatment for AKI in humans.
Appendix
Available only for authorised users
Literature
1.
go back to reference Coca S, Singanamala S, Parikh C. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int. 2012;81:442–8.CrossRefPubMed Coca S, Singanamala S, Parikh C. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int. 2012;81:442–8.CrossRefPubMed
2.
go back to reference Rodrigue F, Bruetto R, Torres U, Otaviano A, Zanetta D, Burdmann E. Incidence and mortality of acute kidney injury after myocardial infarction: a comparison between KDIGO and RIFLE criteria. PLoS One. 2013;8(7):e69998.CrossRef Rodrigue F, Bruetto R, Torres U, Otaviano A, Zanetta D, Burdmann E. Incidence and mortality of acute kidney injury after myocardial infarction: a comparison between KDIGO and RIFLE criteria. PLoS One. 2013;8(7):e69998.CrossRef
4.
go back to reference Reents W, Hilker M, Börgermann J, Albert M, Plötze K, Zacher M, Diegeler A, Böning A. Acute kidney injury after on-pump or off-pump coronary artery bypass grafting in elderly patients. Ann Thorac Surg. 2014; 98(1):9-14. Reents W, Hilker M, Börgermann J, Albert M, Plötze K, Zacher M, Diegeler A, Böning A. Acute kidney injury after on-pump or off-pump coronary artery bypass grafting in elderly patients. Ann Thorac Surg. 2014; 98(1):9-14.
5.
go back to reference Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO Clinical Practice Guidelines for Acute Kidney Injury. Kidney Int Suppl. 2012;2:1–138.CrossRef Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO Clinical Practice Guidelines for Acute Kidney Injury. Kidney Int Suppl. 2012;2:1–138.CrossRef
6.
go back to reference Monchi M, Berghmans D, Ledoux D, Canivet J, Dubois B, Damas P. Citrate vs. heparin for anticoagulation in continuous venovenous hemofiltrateion: a prospective randomized study. Intensive Care Med. 2004;30(2):260–5.CrossRefPubMed Monchi M, Berghmans D, Ledoux D, Canivet J, Dubois B, Damas P. Citrate vs. heparin for anticoagulation in continuous venovenous hemofiltrateion: a prospective randomized study. Intensive Care Med. 2004;30(2):260–5.CrossRefPubMed
7.
go back to reference Kutsogiannis D, Gibney R, Stollery D, Gao J. Regional citrate versus systemic heparin anticoagulation for continuous renal replacement in critically ill patients. Kidney Int. 2005;67(6):2361–7.CrossRefPubMed Kutsogiannis D, Gibney R, Stollery D, Gao J. Regional citrate versus systemic heparin anticoagulation for continuous renal replacement in critically ill patients. Kidney Int. 2005;67(6):2361–7.CrossRefPubMed
8.
go back to reference Betjes M, van Oosterom D, van Agteren M, van de Wetering J. Regional citrate versus heparin anticoagulation during venovenous hemofiltration in patients at low risk for bleeding: similar hemofilter survival but significantly less bleeding. J Nephrol. 2007;20(5):602–8.PubMed Betjes M, van Oosterom D, van Agteren M, van de Wetering J. Regional citrate versus heparin anticoagulation during venovenous hemofiltration in patients at low risk for bleeding: similar hemofilter survival but significantly less bleeding. J Nephrol. 2007;20(5):602–8.PubMed
9.
go back to reference Oudemans-van Straaten H, Bosman R, Koopmans R, van der Voort P, Wester J, van der Spoel J, Dijksman L, Zandstra D. Citrate anticoagulation for continuous venovenous hemofiltration. Crit Care Med. 2009;37:545–52.CrossRefPubMed Oudemans-van Straaten H, Bosman R, Koopmans R, van der Voort P, Wester J, van der Spoel J, Dijksman L, Zandstra D. Citrate anticoagulation for continuous venovenous hemofiltration. Crit Care Med. 2009;37:545–52.CrossRefPubMed
10.
go back to reference Saner F, Treckmann J, Geis A, Lösch C, Witzke O, Canbay A, Herget-Rosenthal S, Kribben A, Paul A, Feldkamp T. Efficacy and safety of regional citrate anticoagulation in liver transplant patients requiring post-operative renal replacement therapy. Nephrol Dial Transplant. 2012;27(4):1651–7.CrossRefPubMed Saner F, Treckmann J, Geis A, Lösch C, Witzke O, Canbay A, Herget-Rosenthal S, Kribben A, Paul A, Feldkamp T. Efficacy and safety of regional citrate anticoagulation in liver transplant patients requiring post-operative renal replacement therapy. Nephrol Dial Transplant. 2012;27(4):1651–7.CrossRefPubMed
11.
go back to reference Tiranathanagul K, Jearnsujitwimol O, Susantitaphong P, Kijkriengkraikul N, Leelahavanichkul A, Srisawat N, Praditpornsilpa K, Eiam-Ong S. Regional citrate anticoagulation reduces polymorphonuclear cell degranulation in critically ill patients treated with continuous venovenous hemofiltration. Ther Apher Dial. 2011;15(6):556–64.CrossRefPubMed Tiranathanagul K, Jearnsujitwimol O, Susantitaphong P, Kijkriengkraikul N, Leelahavanichkul A, Srisawat N, Praditpornsilpa K, Eiam-Ong S. Regional citrate anticoagulation reduces polymorphonuclear cell degranulation in critically ill patients treated with continuous venovenous hemofiltration. Ther Apher Dial. 2011;15(6):556–64.CrossRefPubMed
12.
go back to reference Weinberg J, Venkatachalam M, Roeser N, Saikumar P, Dong Z, Senter R, Nissim I. Anaerobic and aerobic pathways for salvage of proximal tubules from hypoxia-induced mitochondrial injury. Am J Physiol Renal Physiol. 2000;279(5):F927–943.PubMedPubMedCentral Weinberg J, Venkatachalam M, Roeser N, Saikumar P, Dong Z, Senter R, Nissim I. Anaerobic and aerobic pathways for salvage of proximal tubules from hypoxia-induced mitochondrial injury. Am J Physiol Renal Physiol. 2000;279(5):F927–943.PubMedPubMedCentral
13.
go back to reference Feldkamp T, Kribben A, Roeser N, Senter R, Weinberg J. Accumulation of nonesterified fatty acids causes the sustained energetic deficit in kidney proximal tubules after hypoxia/reoxygenation. Am J Physiol Renal Physiol. 2006;290:F465–477.CrossRefPubMed Feldkamp T, Kribben A, Roeser N, Senter R, Weinberg J. Accumulation of nonesterified fatty acids causes the sustained energetic deficit in kidney proximal tubules after hypoxia/reoxygenation. Am J Physiol Renal Physiol. 2006;290:F465–477.CrossRefPubMed
14.
go back to reference Bienholz A, Petrat F, Wenzel P, Ickerott P, Weinberg J, Witzke O, Kribben A, de Groot H, Feldkamp T. Adverse effects of α-ketoglutarate/malate in a rat model of acute kidney injury. Am J Physiol Renal Physiol. 2012;303(1):F56–63.CrossRefPubMedPubMedCentral Bienholz A, Petrat F, Wenzel P, Ickerott P, Weinberg J, Witzke O, Kribben A, de Groot H, Feldkamp T. Adverse effects of α-ketoglutarate/malate in a rat model of acute kidney injury. Am J Physiol Renal Physiol. 2012;303(1):F56–63.CrossRefPubMedPubMedCentral
15.
go back to reference Petrat F, de Groot H. Protection against severe interstinal ischemia/reperfusion injury in rats by intravenous resveratrol. J Surg Res. 2011;167:e145–155.CrossRefPubMed Petrat F, de Groot H. Protection against severe interstinal ischemia/reperfusion injury in rats by intravenous resveratrol. J Surg Res. 2011;167:e145–155.CrossRefPubMed
16.
go back to reference Feldkamp T, Weinberg J, Hörbelt M, Kropff CV, Witzke O, Nürnberger J, Kribben A. Evidence for involvement of nonesterified fatty acid-induced protonophoric uncoupling during mitochondrial dysfunction caused by hypoxia and reoxygenation. Nephrol Dial Transplant. 2009;24(1):43–51.CrossRefPubMed Feldkamp T, Weinberg J, Hörbelt M, Kropff CV, Witzke O, Nürnberger J, Kribben A. Evidence for involvement of nonesterified fatty acid-induced protonophoric uncoupling during mitochondrial dysfunction caused by hypoxia and reoxygenation. Nephrol Dial Transplant. 2009;24(1):43–51.CrossRefPubMed
17.
go back to reference Lowry O, Rosebrough N, Farr A, Randall R. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–75.PubMed Lowry O, Rosebrough N, Farr A, Randall R. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–75.PubMed
18.
go back to reference Hetzel G, Taskaya G, Sucker C, Hennersdorf M, Grabensee B, Schmitz M. Citrate plasma levels in patients under regional anticoagulation in continuous venovenous hemofiltration. Am J Kidney Dis. 2006;48:806–11.CrossRefPubMed Hetzel G, Taskaya G, Sucker C, Hennersdorf M, Grabensee B, Schmitz M. Citrate plasma levels in patients under regional anticoagulation in continuous venovenous hemofiltration. Am J Kidney Dis. 2006;48:806–11.CrossRefPubMed
19.
go back to reference Toyoshima S, Fukuda T, Masumi S, Nakashima Y, Kawaguchi Y, Nakayama M. Maximum acceptable infusion rate of citrate: relationship between blood ionized calcium levels and cardivascular effects in anesthetized rats. Clin Nutr. 2006;25:653–60.CrossRefPubMed Toyoshima S, Fukuda T, Masumi S, Nakashima Y, Kawaguchi Y, Nakayama M. Maximum acceptable infusion rate of citrate: relationship between blood ionized calcium levels and cardivascular effects in anesthetized rats. Clin Nutr. 2006;25:653–60.CrossRefPubMed
20.
go back to reference Fukuda T, Nakashima Y, Harada M, Toyoshima S, Koshitani O, Kawaguchi Y, Nakayama M. Effect of whole blood clotting time in rats with ionized hypocalcemia induced by rapid intravenous citrate infusion. J Toxicol Sci. 2006;31(3):229–34.CrossRefPubMed Fukuda T, Nakashima Y, Harada M, Toyoshima S, Koshitani O, Kawaguchi Y, Nakayama M. Effect of whole blood clotting time in rats with ionized hypocalcemia induced by rapid intravenous citrate infusion. J Toxicol Sci. 2006;31(3):229–34.CrossRefPubMed
21.
go back to reference Mitaka C, Si M, Tulafu M, Yu Q, Uchida T, Abe S, Kitagawa M, Ikeda S, Eishi Y, Tomita M. Effects of atrial natriuretic peptide on inter-organ crosstalk among the kidney, lung, and heart in a rat model of renal ischemia-reperfusion injury. Intensive Care Med Exp. 2014;2(1):28.CrossRefPubMedPubMedCentral Mitaka C, Si M, Tulafu M, Yu Q, Uchida T, Abe S, Kitagawa M, Ikeda S, Eishi Y, Tomita M. Effects of atrial natriuretic peptide on inter-organ crosstalk among the kidney, lung, and heart in a rat model of renal ischemia-reperfusion injury. Intensive Care Med Exp. 2014;2(1):28.CrossRefPubMedPubMedCentral
22.
go back to reference Reid F, Lobo D, Williams R, Rowlands B, Allison S. (Ab)normal saline and physiological Hartmann‘s solution: a randomized double-blind crossover study. Clin Sci (Lond). 2003;104(1):17–24. Reid F, Lobo D, Williams R, Rowlands B, Allison S. (Ab)normal saline and physiological Hartmann‘s solution: a randomized double-blind crossover study. Clin Sci (Lond). 2003;104(1):17–24.
23.
go back to reference Lobo D, Stanga Z, Aloysius M, Wicks C, Nunes Q, Ingram K, Risch L, Allison S. Effect of volume loading with 1 liter intravenous infusions of 0.9% saline, 4% succinylated gelatin (Gelofusine) and 6% hydroxyethyl starch (Voluven) on blood volume and endocrine responses: a randomized, three-way crossover study in healthy volunteers. Crit Care Med. 2010;38(2):464–70.CrossRefPubMed Lobo D, Stanga Z, Aloysius M, Wicks C, Nunes Q, Ingram K, Risch L, Allison S. Effect of volume loading with 1 liter intravenous infusions of 0.9% saline, 4% succinylated gelatin (Gelofusine) and 6% hydroxyethyl starch (Voluven) on blood volume and endocrine responses: a randomized, three-way crossover study in healthy volunteers. Crit Care Med. 2010;38(2):464–70.CrossRefPubMed
24.
go back to reference Williams E, Hildebrand K, McCormick S, Bedel M. The effect of intravenous lactated Ringer‘s solution versus 0.9% sodium chloride solution on serum osmolality in human volunteers. Anesth Analg. 1999;88(5):999–1003.PubMed Williams E, Hildebrand K, McCormick S, Bedel M. The effect of intravenous lactated Ringer‘s solution versus 0.9% sodium chloride solution on serum osmolality in human volunteers. Anesth Analg. 1999;88(5):999–1003.PubMed
25.
go back to reference Kellum JB R, Kramer D, Pinsky M. Etiology of metabolic acidosis during saline resuscitation in endotoxemia. Shock. 1998;9(5):364–8.CrossRef Kellum JB R, Kramer D, Pinsky M. Etiology of metabolic acidosis during saline resuscitation in endotoxemia. Shock. 1998;9(5):364–8.CrossRef
27.
go back to reference Nashat F, Tappin J, Wilcox C. The renal blood flow and the glomerular filtration rate of anaesthetized dogs during acut changes in plasma sodium concentration. J Physiol. 1976;256:731–45.CrossRefPubMedPubMedCentral Nashat F, Tappin J, Wilcox C. The renal blood flow and the glomerular filtration rate of anaesthetized dogs during acut changes in plasma sodium concentration. J Physiol. 1976;256:731–45.CrossRefPubMedPubMedCentral
28.
go back to reference Hansen P, Jensen B, Skott O. Chloride regulates afferent ateriolar contraction in response to depolarization. Hypertension. 1998;32:1066–70.CrossRefPubMed Hansen P, Jensen B, Skott O. Chloride regulates afferent ateriolar contraction in response to depolarization. Hypertension. 1998;32:1066–70.CrossRefPubMed
29.
go back to reference Bullivant E, Wilcox C, Welch W. Intrarenal vasoconstriction during hyperchloremia: role of thromboxane. Am J Physiol. 1989;256:F152–157.PubMed Bullivant E, Wilcox C, Welch W. Intrarenal vasoconstriction during hyperchloremia: role of thromboxane. Am J Physiol. 1989;256:F152–157.PubMed
30.
go back to reference Wu M, Chien C, Ma M, Chen C. Protection of ischemic preconditioning on renal neural function in rats with acute renal failure. Chin J Physiol. 2009;52(5 Suppl):365–75.CrossRefPubMed Wu M, Chien C, Ma M, Chen C. Protection of ischemic preconditioning on renal neural function in rats with acute renal failure. Chin J Physiol. 2009;52(5 Suppl):365–75.CrossRefPubMed
31.
go back to reference Karajala V, Mansour W, Kellum J. Diuretics and mortality in acute kidney injury. Minverva Anestesiol. 2009;75:251–7. Karajala V, Mansour W, Kellum J. Diuretics and mortality in acute kidney injury. Minverva Anestesiol. 2009;75:251–7.
32.
33.
go back to reference Hassel B, Ilebekk A, Tonnessen T. Cardiac accumulation of citrate during brief myocardial ischaemia and reperfusion in the pig in vivo. Acta Physiol Scand. 1998;164:53–9.CrossRefPubMed Hassel B, Ilebekk A, Tonnessen T. Cardiac accumulation of citrate during brief myocardial ischaemia and reperfusion in the pig in vivo. Acta Physiol Scand. 1998;164:53–9.CrossRefPubMed
34.
go back to reference Pisarenko O, Studneva I, Khlopkov V, Solomatina E, Ruuge E. An assessment of anaerobic metabolism during ischemia and reperfusion in isolated guinea pig heart. Biochim Biophys Acta. 1988;934(1):55–63.CrossRefPubMed Pisarenko O, Studneva I, Khlopkov V, Solomatina E, Ruuge E. An assessment of anaerobic metabolism during ischemia and reperfusion in isolated guinea pig heart. Biochim Biophys Acta. 1988;934(1):55–63.CrossRefPubMed
35.
go back to reference Hauet T, Baumert H, Gibelin H, Hameury F, Goujon J, Carretier M, Eugene M. Noninvasive monitoring of citrate, acetate, lactate, and renal medullary osmolyte excretion in urine as biomarkers of exposure to ischemic reperfusin injury. Cryobiology. 2000;41:280–91.CrossRefPubMed Hauet T, Baumert H, Gibelin H, Hameury F, Goujon J, Carretier M, Eugene M. Noninvasive monitoring of citrate, acetate, lactate, and renal medullary osmolyte excretion in urine as biomarkers of exposure to ischemic reperfusin injury. Cryobiology. 2000;41:280–91.CrossRefPubMed
36.
go back to reference Zacchia M, Preisig P. Low urinary citrate: an overview. J Nephrol. 2010;23 Suppl 16:49–56. Zacchia M, Preisig P. Low urinary citrate: an overview. J Nephrol. 2010;23 Suppl 16:49–56.
37.
Metadata
Title
Citrate shows protective effects on cardiovascular and renal function in ischemia-induced acute kidney injury
Authors
Anja Bienholz
Jonas Reis
Pinar Sanli
Herbert de Groot
Frank Petrat
Hana Guberina
Benjamin Wilde
Oliver Witzke
Fuat H. Saner
Andreas Kribben
Joel M. Weinberg
Thorsten Feldkamp
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2017
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-017-0546-1

Other articles of this Issue 1/2017

BMC Nephrology 1/2017 Go to the issue