Skip to main content
Top
Published in: BMC Nephrology 1/2017

Open Access 01-12-2017 | Research article

Plasma Urotensin II levels in children and adolescents with chronic kidney disease: a single-centre study

Authors: Anastasia Garoufi, Styliani Drapanioti, Antonios Marmarinos, Varvara Askiti, Andromachi J. Mitsioni, Maria Mila, Georgia Grigoriadou, Dimitrios Georgakopoulos, Constantinos J. Stefanidis, Dimitrios Gourgiotis

Published in: BMC Nephrology | Issue 1/2017

Login to get access

Abstract

Background

Increased plasma Urotensin II (UII) levels have been found in adults with renal diseases. Studies in children are scarce. The objective of the study is to estimate plasma UII levels in subjects with chronic kidney disease (CKD) stages 3 to 5 and renal transplant recipients (RTR). In addition, the correlation of UII with anthropometric features and biochemical parameters was assessed.

Methods

Fifty-four subjects, aged 3 to 20 years old, 23 with CKD, 13 with end-stage kidney disease (ESKD) undergoing hemodialysis (HD) and 18 RTR were enrolled. A detailed clinical evaluation was performed. Biochemical parameters of renal and liver function were measured. Plasma UII levels were measured in all patients and in 117 healthy controls, using a high sensitive enzyme immunoassay (EIA) kit. All data were analyzed using STATA™ (Version 10.1).

Results

Median UII and mean log-transformed UII levels were significantly higher in CKD and RTR patients compared to healthy subjects (p < 0.001). HD patients had higher but not statistically significant UII and log-UII levels than controls. UII levels increased significantly at the end of the HD session and were higher than controls and in line to those of other patients. The geometric scores of UII in HD (before dialysis), CKD and RTR patients increased respectively by 42, 136 and 164% in comparison with controls. Metabolic acidosis was associated with statistical significant change in log-UII levels (p = 0.001). Patients with metabolic acidosis had an increase in UII concentration by 76% compared to those without acidosis.

Conclusions

Children and adolescents with CKD, particularly those who are not on HD and RTR, have significantly higher levels of UII than healthy subjects. UII levels increase significantly at the end of the HD session. The presence of metabolic acidosis affects significantly plasma UII levels.
Literature
1.
go back to reference Ames RS, Sarau HM, Chambers JK, Willette RN, Aiyar NV, Romanic AM, et al. It is a potent vasoconstrictor and agonist for the orphan recepror GPR14. Nature. 1999;401:282–6.CrossRefPubMed Ames RS, Sarau HM, Chambers JK, Willette RN, Aiyar NV, Romanic AM, et al. It is a potent vasoconstrictor and agonist for the orphan recepror GPR14. Nature. 1999;401:282–6.CrossRefPubMed
2.
go back to reference Bottrill FE, Douglas SA, Hiley CR, White R. Human urotensin-II is an endothelium-dependent vasodilator in rat small arteries. Br J Pharmacol. 2000;130:1865–70.CrossRefPubMedPubMedCentral Bottrill FE, Douglas SA, Hiley CR, White R. Human urotensin-II is an endothelium-dependent vasodilator in rat small arteries. Br J Pharmacol. 2000;130:1865–70.CrossRefPubMedPubMedCentral
3.
go back to reference Affolter J, Webb DJ. Urotensin II; a new mediator in cardiopulmonary regulation? Lancet. 2001;358:774–5.CrossRefPubMed Affolter J, Webb DJ. Urotensin II; a new mediator in cardiopulmonary regulation? Lancet. 2001;358:774–5.CrossRefPubMed
4.
go back to reference Charles CJ, Rademaker MT, Richards AM, Yandle TG. Urotensin II: Evidence for cardiac, hepatic and renal production. Peptides. 2005;26:2211–4.CrossRefPubMed Charles CJ, Rademaker MT, Richards AM, Yandle TG. Urotensin II: Evidence for cardiac, hepatic and renal production. Peptides. 2005;26:2211–4.CrossRefPubMed
5.
go back to reference Mosenkis A, Danoff TM, Aiyar N, Bazeley J, Townsend RR. Human urotensin II in the plasma of anephric subjects. Nephrol Dial Transplant. 2007;22:1269–70.CrossRefPubMed Mosenkis A, Danoff TM, Aiyar N, Bazeley J, Townsend RR. Human urotensin II in the plasma of anephric subjects. Nephrol Dial Transplant. 2007;22:1269–70.CrossRefPubMed
6.
go back to reference Cheung BM, Leung R, Wong LY. Plasma concentration of urotensin II is raised in hypertension. J Hypertens. 2004;22(7):1341–4.CrossRefPubMed Cheung BM, Leung R, Wong LY. Plasma concentration of urotensin II is raised in hypertension. J Hypertens. 2004;22(7):1341–4.CrossRefPubMed
7.
go back to reference Heller J, Schepke M, Neef M, Woitas R, Rabe C, Sauerbrunch T. Increased Urotensin II plasma levels in patients with cirrhosis and portal hypertension. J Hepatol. 2002;37(6):767–72.CrossRefPubMed Heller J, Schepke M, Neef M, Woitas R, Rabe C, Sauerbrunch T. Increased Urotensin II plasma levels in patients with cirrhosis and portal hypertension. J Hepatol. 2002;37(6):767–72.CrossRefPubMed
8.
go back to reference Richards AM, Nicholls MG, Lainchbury JG, Fisher S, Yandle TG. Plasma Urotensin II in heart failure. Lancet. 2002;360:545–6.CrossRefPubMed Richards AM, Nicholls MG, Lainchbury JG, Fisher S, Yandle TG. Plasma Urotensin II in heart failure. Lancet. 2002;360:545–6.CrossRefPubMed
9.
go back to reference Totsune K, Takahashi K, Arihara Z, Sone M, Satoh F, Ito S, et al. Role of Urotensin II in patients on dialysis. Lancet. 2001;358:810–1.CrossRefPubMed Totsune K, Takahashi K, Arihara Z, Sone M, Satoh F, Ito S, et al. Role of Urotensin II in patients on dialysis. Lancet. 2001;358:810–1.CrossRefPubMed
10.
go back to reference Totsune K, Takahashi K, Arihara Z, Sone M, Murakami O, Ito S, et al. Elevated plasma levels of immunoreactivity urotensin II and its increased urinary excretion in patients with Type 2 diabetes mellitus: association with progress of diabetic nephropathy. Peptides. 2004;25:1809–14.CrossRefPubMed Totsune K, Takahashi K, Arihara Z, Sone M, Murakami O, Ito S, et al. Elevated plasma levels of immunoreactivity urotensin II and its increased urinary excretion in patients with Type 2 diabetes mellitus: association with progress of diabetic nephropathy. Peptides. 2004;25:1809–14.CrossRefPubMed
11.
go back to reference Zoccali C, Mallamaci F. Urotensin II: a cardiovascular and renal update. Curr Opin Nephrol Hypertens. 2008;17(2):199–204.CrossRefPubMed Zoccali C, Mallamaci F. Urotensin II: a cardiovascular and renal update. Curr Opin Nephrol Hypertens. 2008;17(2):199–204.CrossRefPubMed
13.
go back to reference Krum H, Kemp W. Therapeutic potential of blockade of the Urotensin II system in systemic hypertension. Curr Hypertens Rep. 2007;9(1):53–8.CrossRefPubMed Krum H, Kemp W. Therapeutic potential of blockade of the Urotensin II system in systemic hypertension. Curr Hypertens Rep. 2007;9(1):53–8.CrossRefPubMed
14.
go back to reference Ashton N. Renal and vascular actions of urotensin II. Kidney Intern. 2006;70:624–9.CrossRef Ashton N. Renal and vascular actions of urotensin II. Kidney Intern. 2006;70:624–9.CrossRef
15.
go back to reference Khan SQ, Bhandari SS, Quinn P, Davies JE, Ng LL. Urotensin II is raised in acute myocardial infarction and low levels predict risk of adverse clinical outcome in humans. Int J Cardiol. 2007;117(3):323–8.CrossRefPubMed Khan SQ, Bhandari SS, Quinn P, Davies JE, Ng LL. Urotensin II is raised in acute myocardial infarction and low levels predict risk of adverse clinical outcome in humans. Int J Cardiol. 2007;117(3):323–8.CrossRefPubMed
16.
go back to reference Takahashi K, Hirose T, Mori N, Morimoto R, Kohzuki M, Imai Y, et al. The renin-angiotensin system, adrenomedullins and urotensin II in the kidney: possible renoprotection via the kidney peptide systems. Peptides. 2009;30:1575–85.CrossRefPubMed Takahashi K, Hirose T, Mori N, Morimoto R, Kohzuki M, Imai Y, et al. The renin-angiotensin system, adrenomedullins and urotensin II in the kidney: possible renoprotection via the kidney peptide systems. Peptides. 2009;30:1575–85.CrossRefPubMed
17.
go back to reference Zoccali C, Mallamaci F, Tricepi G, Cutrupi S, Pizzini P, Malatino L. Urotensin II is an inverse predictor of incident cardiovascular events in end-stage renal disease. Kidney Int. 2006;69:1253–8.CrossRefPubMed Zoccali C, Mallamaci F, Tricepi G, Cutrupi S, Pizzini P, Malatino L. Urotensin II is an inverse predictor of incident cardiovascular events in end-stage renal disease. Kidney Int. 2006;69:1253–8.CrossRefPubMed
18.
go back to reference Ravani P, Tripepi G, Pecchini P, Mallamaci F, Malberti F, Zoccali C. Urotensin II is an inverse predictor of death and fatal cardiovascular events in chronic kidney disease. Kidney Int. 2008;73(1):95–101.CrossRefPubMed Ravani P, Tripepi G, Pecchini P, Mallamaci F, Malberti F, Zoccali C. Urotensin II is an inverse predictor of death and fatal cardiovascular events in chronic kidney disease. Kidney Int. 2008;73(1):95–101.CrossRefPubMed
19.
go back to reference Wang T, Li SX, Zhang XQ, Gu XH, Song Y, Zhang G, et al. Study on the effect of adrenomedulin and urotensin-II on pulmonary hypertension of patients with congenital heart disease. Zhonghua Yi Xue Za Zhi. 2005;85(38):2691–5.PubMed Wang T, Li SX, Zhang XQ, Gu XH, Song Y, Zhang G, et al. Study on the effect of adrenomedulin and urotensin-II on pulmonary hypertension of patients with congenital heart disease. Zhonghua Yi Xue Za Zhi. 2005;85(38):2691–5.PubMed
20.
go back to reference Pawar R, Kemp W, Roberts S, Krum H, Yandle T, Hardikar W. Urotensin II levels are an important marker for the severity of portal hypertension in children. J Pediatr Gastroenterol Nutr. 2011;53(1):88–92.CrossRefPubMed Pawar R, Kemp W, Roberts S, Krum H, Yandle T, Hardikar W. Urotensin II levels are an important marker for the severity of portal hypertension in children. J Pediatr Gastroenterol Nutr. 2011;53(1):88–92.CrossRefPubMed
21.
22.
go back to reference Balat A, Pakir IH, Gok F, Anarat R, Sahinoz S. Urotensin II levels in children with minimal change nephrotic syndrome. Pediatr Nephrol. 2005;20:42–5.CrossRefPubMed Balat A, Pakir IH, Gok F, Anarat R, Sahinoz S. Urotensin II levels in children with minimal change nephrotic syndrome. Pediatr Nephrol. 2005;20:42–5.CrossRefPubMed
23.
go back to reference Balat A, Karakok M, Yilmaz K, Kibar Y. Urotensin-II Immunoreactivity in Children with Chronic Glomerulonephritis. Ren Fail. 2007;29:573–8.CrossRefPubMed Balat A, Karakok M, Yilmaz K, Kibar Y. Urotensin-II Immunoreactivity in Children with Chronic Glomerulonephritis. Ren Fail. 2007;29:573–8.CrossRefPubMed
24.
go back to reference Hogg JR, Furth S, Lemley KV, Portman R, Schwartz GJ, Coresh J, et al. National Kidney Foundation’s Kidney Disease Outcomes Quality Initiative Clinical Practice Guidelines for Chronic Kidney Disease in Children and Adolescents: Evaluation, Classification and Stratification. Pediatrics. 2003;111(6):1416–21.CrossRefPubMed Hogg JR, Furth S, Lemley KV, Portman R, Schwartz GJ, Coresh J, et al. National Kidney Foundation’s Kidney Disease Outcomes Quality Initiative Clinical Practice Guidelines for Chronic Kidney Disease in Children and Adolescents: Evaluation, Classification and Stratification. Pediatrics. 2003;111(6):1416–21.CrossRefPubMed
25.
go back to reference Schwartz GJ, Work DF. Measurement and estimation of GFR in children and adolescents. Clin J Am Soc Nephrol. 2009;4(11):1832–43.CrossRefPubMed Schwartz GJ, Work DF. Measurement and estimation of GFR in children and adolescents. Clin J Am Soc Nephrol. 2009;4(11):1832–43.CrossRefPubMed
26.
go back to reference Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide:international survey. BMJ. 2000;320:1240–3.CrossRefPubMedPubMedCentral Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide:international survey. BMJ. 2000;320:1240–3.CrossRefPubMedPubMedCentral
27.
go back to reference Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents; National Heart, Lung, and Blood Institute. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: summary report. Pediatrics. 2011; 128 (Suppl 5): S213-256. Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents; National Heart, Lung, and Blood Institute. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: summary report. Pediatrics. 2011; 128 (Suppl 5): S213-256.
28.
go back to reference Mallamaci F, Cutrupi S, Pizzini P, Tripepi G, Zoccali C. Urotensin iI and biomarkers of endothelial activation and atherosclerosis in end-stage renal disease. Am J Hypertens. 2006;19:505–10.CrossRefPubMed Mallamaci F, Cutrupi S, Pizzini P, Tripepi G, Zoccali C. Urotensin iI and biomarkers of endothelial activation and atherosclerosis in end-stage renal disease. Am J Hypertens. 2006;19:505–10.CrossRefPubMed
29.
go back to reference Boos CJ, Lip GY. Urotensin and cardiovascular risk among patients with end-stage renal disease: fact or fiction? Am J Hypertens. 2006;19(5):511–2.CrossRefPubMed Boos CJ, Lip GY. Urotensin and cardiovascular risk among patients with end-stage renal disease: fact or fiction? Am J Hypertens. 2006;19(5):511–2.CrossRefPubMed
30.
go back to reference Mallamaci F, Cutrupi S, Pizzini P, Tripepi G, Zoccali C. Urotensin in end- stage renal disease: an inverse correlate of sympathetic function and cardiac natriuretic peptides. J Nephrol. 2005;18:727–32.PubMed Mallamaci F, Cutrupi S, Pizzini P, Tripepi G, Zoccali C. Urotensin in end- stage renal disease: an inverse correlate of sympathetic function and cardiac natriuretic peptides. J Nephrol. 2005;18:727–32.PubMed
31.
go back to reference Thanassoulis G, Huyhn T, Giaid A. Urotensin II and cardiovascular diseases. Peptides. 2004;25:1789–94.CrossRefPubMed Thanassoulis G, Huyhn T, Giaid A. Urotensin II and cardiovascular diseases. Peptides. 2004;25:1789–94.CrossRefPubMed
32.
33.
go back to reference Zoccali C, Mallamaci F, Benedetto FA, Tripepi G, Pizzini P, Cutrupi S, et al. Urotensin II and Cardiomyopathy in End- Stage Renal Disease. Hypertension. 2008;51:326–33.CrossRefPubMed Zoccali C, Mallamaci F, Benedetto FA, Tripepi G, Pizzini P, Cutrupi S, et al. Urotensin II and Cardiomyopathy in End- Stage Renal Disease. Hypertension. 2008;51:326–33.CrossRefPubMed
34.
go back to reference Matsushita M, Shichiri M, Imai T, Iwashina M, Tanaka H, Takasu N, et al. Co-expression of urotensin II and its receptor (GPR14) in human cardiovascular and renal tissues. J Hypertension. 2001;19:2185–90.CrossRef Matsushita M, Shichiri M, Imai T, Iwashina M, Tanaka H, Takasu N, et al. Co-expression of urotensin II and its receptor (GPR14) in human cardiovascular and renal tissues. J Hypertension. 2001;19:2185–90.CrossRef
35.
go back to reference Mori N, Hirose T, Nakayama T, Ito O, Kanazawa M, Imai Y, et al. Increased expression of urotensin II-related peptide and its receptor in kidney hypertension or renal failure. Peptides. 2009;30:400–8.CrossRefPubMed Mori N, Hirose T, Nakayama T, Ito O, Kanazawa M, Imai Y, et al. Increased expression of urotensin II-related peptide and its receptor in kidney hypertension or renal failure. Peptides. 2009;30:400–8.CrossRefPubMed
36.
go back to reference Mosenkis A, Kallem RR, Danoff TM, Aiyar N, Bazeley J, Townsend RR. Renal impairment, hypertension and plasma urotensin II. Nephrol Dial Transplant. 2011;26:609–14.CrossRefPubMed Mosenkis A, Kallem RR, Danoff TM, Aiyar N, Bazeley J, Townsend RR. Renal impairment, hypertension and plasma urotensin II. Nephrol Dial Transplant. 2011;26:609–14.CrossRefPubMed
37.
go back to reference Yilmaz B, Yilmaz A, Sari F, Sarikaya AM, Ellidag HY, Kucukseymen S, Ozpelit E. Decrease of Urotensin II activity can impact on the volume status in predialysis chronic kidney disease. Ren Failure. 2015;37(3):476–81.CrossRef Yilmaz B, Yilmaz A, Sari F, Sarikaya AM, Ellidag HY, Kucukseymen S, Ozpelit E. Decrease of Urotensin II activity can impact on the volume status in predialysis chronic kidney disease. Ren Failure. 2015;37(3):476–81.CrossRef
39.
go back to reference Hursitoglu M, Tukek T, Cikrikcioglu MA, Kara O, Kazancioglu R, Ozkan O, et al. Urotensin II levels in patients with chronic kidney disease and kidney transplants. Upsala J of Med Sciences. 2012;117:22–7.CrossRef Hursitoglu M, Tukek T, Cikrikcioglu MA, Kara O, Kazancioglu R, Ozkan O, et al. Urotensin II levels in patients with chronic kidney disease and kidney transplants. Upsala J of Med Sciences. 2012;117:22–7.CrossRef
40.
go back to reference Tsai YT, Lee CY, Hsu CC, Chang CY, Hsueh MK, Huang EY, et al. Effects of urotensin II on intracellular pH regulation in cultured human internal mammary artery smooth muscle cells. Peptides. 2014;56:173–82.CrossRefPubMed Tsai YT, Lee CY, Hsu CC, Chang CY, Hsueh MK, Huang EY, et al. Effects of urotensin II on intracellular pH regulation in cultured human internal mammary artery smooth muscle cells. Peptides. 2014;56:173–82.CrossRefPubMed
41.
go back to reference Tanrisev M, Gungor O, Kocyigit I, Kurtulmus Y, Tugmen C, Colak H, et al. Renal tubular acidosis in renal transplant patients: the effect of immunosuppressive drugs. Ann Transplant. 2015;20:85–91.CrossRefPubMed Tanrisev M, Gungor O, Kocyigit I, Kurtulmus Y, Tugmen C, Colak H, et al. Renal tubular acidosis in renal transplant patients: the effect of immunosuppressive drugs. Ann Transplant. 2015;20:85–91.CrossRefPubMed
42.
go back to reference Papadoyannakis NJ, Stefanidis CJ, McGeown M. The effect of the correction of metabolic acidosis on nitrogen and potassium balance of patients with chronic renal failure. Am J Clin Nutr. 1984;40(3):623–7.PubMed Papadoyannakis NJ, Stefanidis CJ, McGeown M. The effect of the correction of metabolic acidosis on nitrogen and potassium balance of patients with chronic renal failure. Am J Clin Nutr. 1984;40(3):623–7.PubMed
43.
go back to reference Mitch WE, Medina R, Grieber S, May RC, England BK, Price SR, Bailey JL, Goldberg AL. Metabolic acidosis stimulates muscle protein degradation by activating the adenosine triphosphate-dependent pathway involving ubiquitin and proteasomes. J Clin Invest. 1994;93(5):2127–33.CrossRefPubMedPubMedCentral Mitch WE, Medina R, Grieber S, May RC, England BK, Price SR, Bailey JL, Goldberg AL. Metabolic acidosis stimulates muscle protein degradation by activating the adenosine triphosphate-dependent pathway involving ubiquitin and proteasomes. J Clin Invest. 1994;93(5):2127–33.CrossRefPubMedPubMedCentral
44.
go back to reference Kraut JA, Madias NE. Consequences and therapy of the metabolic acidosis of chronic kidney disease. Pediatr Nephrol. 2011;26(1):19–28.CrossRefPubMed Kraut JA, Madias NE. Consequences and therapy of the metabolic acidosis of chronic kidney disease. Pediatr Nephrol. 2011;26(1):19–28.CrossRefPubMed
45.
go back to reference Ng LL, Loke I, O’Brien RJ, Squire IB, Davies JE. Plasma urotensin in human systolic heart failure. Circulation. 2002;106:2877–80.CrossRefPubMed Ng LL, Loke I, O’Brien RJ, Squire IB, Davies JE. Plasma urotensin in human systolic heart failure. Circulation. 2002;106:2877–80.CrossRefPubMed
Metadata
Title
Plasma Urotensin II levels in children and adolescents with chronic kidney disease: a single-centre study
Authors
Anastasia Garoufi
Styliani Drapanioti
Antonios Marmarinos
Varvara Askiti
Andromachi J. Mitsioni
Maria Mila
Georgia Grigoriadou
Dimitrios Georgakopoulos
Constantinos J. Stefanidis
Dimitrios Gourgiotis
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2017
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-017-0530-9

Other articles of this Issue 1/2017

BMC Nephrology 1/2017 Go to the issue