Skip to main content
Top
Published in: BMC Nephrology 1/2017

Open Access 01-12-2017 | Study protocol

The Ferumoxytol for Anemia of CKD Trial (FACT)—a randomized controlled trial of repeated doses of ferumoxytol or iron sucrose in patients on hemodialysis: background and rationale

Authors: Iain C. Macdougall, Naomi V. Dahl, Kristine Bernard, Zhu Li, Alka Batycky, William E. Strauss

Published in: BMC Nephrology | Issue 1/2017

Login to get access

Abstract

Background

Iron deficiency anemia (IDA) is a common manifestation of chronic kidney disease (CKD), affecting most patients on hemodialysis and imposing a substantial clinical burden. Treatment with iron supplementation increases hemoglobin levels and can reduce the severity of anemia in patients with CKD. While correcting anemia in these patients is an important therapeutic goal, there is a lack of long-term trials directly comparing intravenous iron therapies in patients with CKD receiving hemodialysis.

Methods/Design

The Ferumoxytol for Anemia of CKD Trial (FACT) is a 13-month, open-label, randomized, multicenter, international, prospective study with 2 substudies. Entry criteria for the main study include adults with IDA (defined as hemoglobin <11.5 g/dL [<115.0 g/L] and a transferrin saturation <30%), serum ferritin <800 ng/mL (<1798 pmol/L), and receiving hemodialysis for ≥3 months. Patients are randomized to receive ferumoxytol (1.02 g over 2 doses) or iron sucrose (1.0 g over 10 doses) during the initial 5-week treatment period. Those with persistent/recurrent IDA over the 11-month observation period will receive additional 5-week treatment periods, as appropriate. The primary efficacy endpoint of the main study is the mean change in hemoglobin from Baseline to Week 5 for each treatment period. The secondary efficacy endpoints include the mean change in transferrin saturation from Baseline to Week 5 and the proportion of patients with a hemoglobin increase of ≥1.0 g/dL at any time from Baseline to Week 5. Safety will be assessed through an examination of the adverse event profile over the course of the study. An “oxidative stress” substudy in approximately 100 patients will assess the effects of treatment on biomarkers of oxidative stress/inflammation during the initial 5-week treatment period, and a magnetic resonance imaging substudy in approximately 70 patients will assess the potential for iron deposition in target tissues over 24 months.

Discussion

FACT fulfills the need for a long-term comparative trial in patients with IDA and CKD receiving hemodialysis. The efficacy and safety results will provide useful information for guiding therapy in this population. Two hundred ninety-six patients have been enrolled, and completion of the main study is expected soon.

Trial registration

ClinicalTrials.gov identifier: NCT01227616 (registered October 22, 2010); EudraCT number: 2010-022133-28
Literature
1.
go back to reference Kazmi WH, Kausz AT, Khan S, Abichandani R, Ruthazer R, Obrador GT, et al. Anemia: an early complication of chronic renal insufficiency. Am J Kidney Dis. 2001;38:803–12.CrossRefPubMed Kazmi WH, Kausz AT, Khan S, Abichandani R, Ruthazer R, Obrador GT, et al. Anemia: an early complication of chronic renal insufficiency. Am J Kidney Dis. 2001;38:803–12.CrossRefPubMed
2.
go back to reference Astor BC, Muntner P, Levin A, Eustace JA, Coresh J. Association of kidney function with anemia: the Third National Health and Nutrition Examination Survey (1988-1994). Arch Intern Med. 2002;162:1401–8.CrossRefPubMed Astor BC, Muntner P, Levin A, Eustace JA, Coresh J. Association of kidney function with anemia: the Third National Health and Nutrition Examination Survey (1988-1994). Arch Intern Med. 2002;162:1401–8.CrossRefPubMed
3.
go back to reference Hsu CY, McCulloch CE, Curhan GC. Epidemiology of anemia associated with chronic renal insufficiency among adults in the United States: results from the Third National Health and Nutrition Examination Survey. J Am Soc Nephrol. 2002;13:504–10.CrossRefPubMed Hsu CY, McCulloch CE, Curhan GC. Epidemiology of anemia associated with chronic renal insufficiency among adults in the United States: results from the Third National Health and Nutrition Examination Survey. J Am Soc Nephrol. 2002;13:504–10.CrossRefPubMed
4.
go back to reference Macdougall IC, Geisser P. Use of intravenous iron supplementation in chronic kidney disease: an update. Iran J Kidney Dis. 2013;7:9–22.PubMed Macdougall IC, Geisser P. Use of intravenous iron supplementation in chronic kidney disease: an update. Iran J Kidney Dis. 2013;7:9–22.PubMed
5.
go back to reference Anker SD, Comin Colet J, Filippatos G, Willenheimer R, Dickstein K, Drexler H, et al. Ferric carboxymaltose in patients with heart failure and iron deficiency. N Engl J Med. 2009;361:2436–48.CrossRefPubMed Anker SD, Comin Colet J, Filippatos G, Willenheimer R, Dickstein K, Drexler H, et al. Ferric carboxymaltose in patients with heart failure and iron deficiency. N Engl J Med. 2009;361:2436–48.CrossRefPubMed
6.
go back to reference Ponikowski P, van Veldhuisen DJ, Comin-Colet J, Ertl G, Komajda M, Mareev V, et al. Beneficial effects of long-term intravenous iron therapy with ferric carboxymaltose in patients with symptomatic heart failure and iron deficiency. Eur Heart J. 2015;36:657–68.CrossRefPubMed Ponikowski P, van Veldhuisen DJ, Comin-Colet J, Ertl G, Komajda M, Mareev V, et al. Beneficial effects of long-term intravenous iron therapy with ferric carboxymaltose in patients with symptomatic heart failure and iron deficiency. Eur Heart J. 2015;36:657–68.CrossRefPubMed
7.
go back to reference Sloand JA, Shelly MA, Feigin A, Bernstein P, Monk RD. A double-blind, placebo-controlled trial of intravenous iron dextran therapy in patients with ESRD and restless legs syndrome. Am J Kidney Dis. 2004;43:663–70.CrossRefPubMed Sloand JA, Shelly MA, Feigin A, Bernstein P, Monk RD. A double-blind, placebo-controlled trial of intravenous iron dextran therapy in patients with ESRD and restless legs syndrome. Am J Kidney Dis. 2004;43:663–70.CrossRefPubMed
8.
go back to reference Merlino G, Lorenzut S, Romano G, Sommaro M, Fontana A, Montanaro D, et al. Restless legs syndrome in dialysis patients: a comparison between hemodialysis and continuous ambulatory peritoneal dialysis. Neurol Sci. 2012;33:1311–8.CrossRefPubMed Merlino G, Lorenzut S, Romano G, Sommaro M, Fontana A, Montanaro D, et al. Restless legs syndrome in dialysis patients: a comparison between hemodialysis and continuous ambulatory peritoneal dialysis. Neurol Sci. 2012;33:1311–8.CrossRefPubMed
9.
go back to reference Charytan DM, Pai AB, Chan CT, Coyne DW, Hung AM, Kovesdy CP, et al. Considerations and challenges in defining optimal iron utilization in hemodialysis. J Am Soc Nephrol. 2015;26:1238–47.CrossRefPubMed Charytan DM, Pai AB, Chan CT, Coyne DW, Hung AM, Kovesdy CP, et al. Considerations and challenges in defining optimal iron utilization in hemodialysis. J Am Soc Nephrol. 2015;26:1238–47.CrossRefPubMed
10.
go back to reference Fishbane S, Mathew A, Vaziri ND. Iron toxicity: relevance for dialysis patients. Nephrol Dial Transplant. 2014;29:255–9.CrossRefPubMed Fishbane S, Mathew A, Vaziri ND. Iron toxicity: relevance for dialysis patients. Nephrol Dial Transplant. 2014;29:255–9.CrossRefPubMed
11.
go back to reference Van Buren P, Velez RL, Vaziri ND, Zhou XJ. Iron overdose: a contributor to adverse outcomes in randomized trials of anemia correction in CKD. Int Urol Nephrol. 2012;44:499–507.CrossRefPubMed Van Buren P, Velez RL, Vaziri ND, Zhou XJ. Iron overdose: a contributor to adverse outcomes in randomized trials of anemia correction in CKD. Int Urol Nephrol. 2012;44:499–507.CrossRefPubMed
12.
go back to reference Agarwal R, Vasavada N, Sachs NG, Chase S. Oxidative stress and renal injury with intravenous iron in patients with chronic kidney disease. Kidney Int. 2004;65:2279–89.CrossRefPubMed Agarwal R, Vasavada N, Sachs NG, Chase S. Oxidative stress and renal injury with intravenous iron in patients with chronic kidney disease. Kidney Int. 2004;65:2279–89.CrossRefPubMed
13.
go back to reference Leehey DJ, Palubiak DJ, Chebrolu S, Agarwal R. Sodium ferric gluconate causes oxidative stress but not acute renal injury in patients with chronic kidney disease: a pilot study. Nephrol Dial Transplant. 2005;20:135–40.CrossRefPubMed Leehey DJ, Palubiak DJ, Chebrolu S, Agarwal R. Sodium ferric gluconate causes oxidative stress but not acute renal injury in patients with chronic kidney disease: a pilot study. Nephrol Dial Transplant. 2005;20:135–40.CrossRefPubMed
14.
go back to reference Garcia-Fernandez N, Echeverria A, Sanchez-Ibarrola A, Paramo JA, Coma-Canella I. Randomized clinical trial on acute effects of i.v. iron sucrose during haemodialysis. Nephrology (Carlton). 2010;15:178–83.CrossRef Garcia-Fernandez N, Echeverria A, Sanchez-Ibarrola A, Paramo JA, Coma-Canella I. Randomized clinical trial on acute effects of i.v. iron sucrose during haemodialysis. Nephrology (Carlton). 2010;15:178–83.CrossRef
15.
go back to reference Lim PS, Wei YH, Yu YL, Kho B. Enhanced oxidative stress in haemodialysis patients receiving intravenous iron therapy. Nephrol Dial Transplant. 1999;14:2680–7.CrossRefPubMed Lim PS, Wei YH, Yu YL, Kho B. Enhanced oxidative stress in haemodialysis patients receiving intravenous iron therapy. Nephrol Dial Transplant. 1999;14:2680–7.CrossRefPubMed
16.
go back to reference Zager RA. Parenteral iron compounds: potent oxidants but mainstays of anemia management in chronic renal disease. Clin J Am Soc Nephrol. 2006;1 Suppl 1:S24–31.CrossRefPubMed Zager RA. Parenteral iron compounds: potent oxidants but mainstays of anemia management in chronic renal disease. Clin J Am Soc Nephrol. 2006;1 Suppl 1:S24–31.CrossRefPubMed
17.
go back to reference Macdougall IC, Strauss WE, McLaughlin J, Li Z, Dellanna F, Hertel J. A randomized comparison of ferumoxytol and iron sucrose for treating iron deficiency anemia in patients with CKD. Clin J Am Soc Nephrol. 2014;9:705–12.CrossRefPubMedPubMedCentral Macdougall IC, Strauss WE, McLaughlin J, Li Z, Dellanna F, Hertel J. A randomized comparison of ferumoxytol and iron sucrose for treating iron deficiency anemia in patients with CKD. Clin J Am Soc Nephrol. 2014;9:705–12.CrossRefPubMedPubMedCentral
18.
go back to reference KDIGO clinical practice guideline for anemia in chronic kidney disease. Kidney Int Suppl. 2012;2:279–335. KDIGO clinical practice guideline for anemia in chronic kidney disease. Kidney Int Suppl. 2012;2:279–335.
19.
go back to reference Saravi M, Tamadoni A, Jalalian R, Mahmoodi-Nesheli H, Hojati M, Ramezani S. Evaluation of tissue doppler echocardiography and T2* magnetic resonance imaging in iron load of patients with thalassemia major. Caspian J Intern Med. 2013;4:692–7.PubMedPubMedCentral Saravi M, Tamadoni A, Jalalian R, Mahmoodi-Nesheli H, Hojati M, Ramezani S. Evaluation of tissue doppler echocardiography and T2* magnetic resonance imaging in iron load of patients with thalassemia major. Caspian J Intern Med. 2013;4:692–7.PubMedPubMedCentral
20.
go back to reference Anderson LJ. Assessment of iron overload with T2* magnetic resonance imaging. Prog Cardiovasc Dis. 2011;54:287–94.CrossRefPubMed Anderson LJ. Assessment of iron overload with T2* magnetic resonance imaging. Prog Cardiovasc Dis. 2011;54:287–94.CrossRefPubMed
21.
go back to reference Venofer® [package insert]. Shirley, NY: American Regent, Inc.; 2015. Venofer® [package insert]. Shirley, NY: American Regent, Inc.; 2015.
22.
go back to reference Johnson AC, Becker K, Zager RA. Parenteral iron formulations differentially affect MCP-1, HO-1, and NGAL gene expression and renal responses to injury. Am J Physiol Renal Physiol. 2010;299:F426–35.CrossRefPubMedPubMedCentral Johnson AC, Becker K, Zager RA. Parenteral iron formulations differentially affect MCP-1, HO-1, and NGAL gene expression and renal responses to injury. Am J Physiol Renal Physiol. 2010;299:F426–35.CrossRefPubMedPubMedCentral
23.
go back to reference Fell LH, Zawada AM, Rogacev KS, Seiler S, Fliser D, Heine GH. Distinct immunologic effects of different intravenous iron preparations on monocytes. Nephrol Dial Transplant. 2014;29:809–22.CrossRefPubMedPubMedCentral Fell LH, Zawada AM, Rogacev KS, Seiler S, Fliser D, Heine GH. Distinct immunologic effects of different intravenous iron preparations on monocytes. Nephrol Dial Transplant. 2014;29:809–22.CrossRefPubMedPubMedCentral
24.
go back to reference Anirban G, Kohli HS, Jha V, Gupta KL, Sakhuja V. The comparative safety of various intravenous iron preparations in chronic kidney disease patients. Ren Fail. 2008;30:629–38.CrossRefPubMed Anirban G, Kohli HS, Jha V, Gupta KL, Sakhuja V. The comparative safety of various intravenous iron preparations in chronic kidney disease patients. Ren Fail. 2008;30:629–38.CrossRefPubMed
25.
go back to reference Besarab A, Amin N, Ahsan M, Vogel SE, Zazuwa G, Frinak S, et al. Optimization of epoetin therapy with intravenous iron therapy in hemodialysis patients. J Am Soc Nephrol. 2000;11:530–8.PubMed Besarab A, Amin N, Ahsan M, Vogel SE, Zazuwa G, Frinak S, et al. Optimization of epoetin therapy with intravenous iron therapy in hemodialysis patients. J Am Soc Nephrol. 2000;11:530–8.PubMed
26.
go back to reference Charytan C, Bernardo MV, Koch TA, Butcher A, Morris D, Bregman DB. Intravenous ferric carboxymaltose versus standard medical care in the treatment of iron deficiency anemia in patients with chronic kidney disease: a randomized, active-controlled, multi-center study. Nephrol Dial Transplant. 2013;28:953–64.CrossRefPubMed Charytan C, Bernardo MV, Koch TA, Butcher A, Morris D, Bregman DB. Intravenous ferric carboxymaltose versus standard medical care in the treatment of iron deficiency anemia in patients with chronic kidney disease: a randomized, active-controlled, multi-center study. Nephrol Dial Transplant. 2013;28:953–64.CrossRefPubMed
27.
go back to reference Goldstein SL, Morris D, Warady BA. Comparison of the safety and efficacy of 3 iron sucrose iron maintenance regimens in children, adolescents, and young adults with CKD: a randomized controlled trial. Am J Kidney Dis. 2013;61:588–97.CrossRefPubMed Goldstein SL, Morris D, Warady BA. Comparison of the safety and efficacy of 3 iron sucrose iron maintenance regimens in children, adolescents, and young adults with CKD: a randomized controlled trial. Am J Kidney Dis. 2013;61:588–97.CrossRefPubMed
28.
go back to reference Kosch M, Bahner U, Bettger H, Matzkies F, Teschner M, Schaefer RM. A randomized, controlled parallel-group trial on efficacy and safety of iron sucrose (Venofer) vs iron gluconate (Ferrlecit) in haemodialysis patients treated with rHuEpo. Nephrol Dial Transplant. 2001;16:1239–44.CrossRefPubMed Kosch M, Bahner U, Bettger H, Matzkies F, Teschner M, Schaefer RM. A randomized, controlled parallel-group trial on efficacy and safety of iron sucrose (Venofer) vs iron gluconate (Ferrlecit) in haemodialysis patients treated with rHuEpo. Nephrol Dial Transplant. 2001;16:1239–44.CrossRefPubMed
29.
go back to reference Sav T, Tokgoz B, Sipahioglu MH, Deveci M, Sari I, Oymak O, et al. Is there a difference between the allergic potencies of the iron sucrose and low molecular weight iron dextran? Ren Fail. 2007;29:423–6.CrossRefPubMed Sav T, Tokgoz B, Sipahioglu MH, Deveci M, Sari I, Oymak O, et al. Is there a difference between the allergic potencies of the iron sucrose and low molecular weight iron dextran? Ren Fail. 2007;29:423–6.CrossRefPubMed
30.
go back to reference Sheashaa H, El-Husseini A, Sabry A, Hassan N, Salem A, Khalil A, et al. Parenteral iron therapy in treatment of anemia in end-stage renal disease patients: a comparative study between iron saccharate and gluconate. Nephron Clin Pract. 2005;99:c97–101.CrossRefPubMed Sheashaa H, El-Husseini A, Sabry A, Hassan N, Salem A, Khalil A, et al. Parenteral iron therapy in treatment of anemia in end-stage renal disease patients: a comparative study between iron saccharate and gluconate. Nephron Clin Pract. 2005;99:c97–101.CrossRefPubMed
31.
go back to reference Warady BA, Zobrist RH, Wu J, Finan E, Ferrlecit Pediatric Study Group. Sodium ferric gluconate complex therapy in anemic children on hemodialysis. Pediatr Nephrol. 2005;20:1320–7.CrossRefPubMed Warady BA, Zobrist RH, Wu J, Finan E, Ferrlecit Pediatric Study Group. Sodium ferric gluconate complex therapy in anemic children on hemodialysis. Pediatr Nephrol. 2005;20:1320–7.CrossRefPubMed
Metadata
Title
The Ferumoxytol for Anemia of CKD Trial (FACT)—a randomized controlled trial of repeated doses of ferumoxytol or iron sucrose in patients on hemodialysis: background and rationale
Authors
Iain C. Macdougall
Naomi V. Dahl
Kristine Bernard
Zhu Li
Alka Batycky
William E. Strauss
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2017
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-017-0523-8

Other articles of this Issue 1/2017

BMC Nephrology 1/2017 Go to the issue