Skip to main content
Top
Published in: BMC Nephrology 1/2017

Open Access 01-12-2017 | Research article

Ascorbic acid ameliorates renal injury in a murine model of contrast-induced nephropathy

Authors: K. Rollins, A. Noorani, L. Janeckova, T. Jones, M. Griffiths, M. P. Baker, J. R. Boyle

Published in: BMC Nephrology | Issue 1/2017

Login to get access

Abstract

Background

Contrast induced nephropathy (CIN) is the commonest cause of iatrogenic renal injury and its incidence has increased with the advent of complex endovascular procedures. Evidence suggests that ascorbic acid (AA) has a nephroprotective effect in percutaneous coronary interventions when contrast media are used. A variety of biomarkers (NGAL, NGAL:creatinine, mononuclear cell infiltration, apoptosis and RBP-4) in both the urine and kidney were assayed using a mouse model of CIN in order to determine whether AA can reduce the incidence and/or severity of renal injury.

Methods

Twenty-four BALB/c mice were divided into 4 groups. Three groups were exposed to high doses of contrast media (omnipaque) in a well-established model of CIN, and then treated with low or high dose AA or placebo (saline). CIN severity was determined by measurement of urinary neutrophil gelatinase-associated lipocalin (NGAL):creatinine at specific time intervals. Histological analysis was performed to determine the level of mononuclear inflammatory infiltration as well as immunohistochemistry to determine apoptosis in the glomeruli by staining for activated caspase-3 and DNA nicking (TUNEL assays). Reverse transcriptase PCR (rtPCR) of mRNA transcripts prepared from mRNA extracted from mouse kidneys was also performed for both lipocalin-2 (Lcn2) encoding NGAL and retinol binding protein-6 (RBP4) genes. NGAL protein expression was also confirmed by ELISA analysis of kidney lysates.

Results

Urinary NGAL:creatinine ratio was significantly lower at 48 h with a 44% and 62% (204.3μg/mmol versus 533.6μg/mmol, p = 0.049) reduction in the low and high dose AA groups, respectively. The reduced urinary NGAL:creatinine ratio remained low throughout the time period assessed (up to 96 h) in the high dose AA group. In support of the urinary analysis ELISA analysis of NGAL in kidney lysates also showed a 57% reduction (12,576 ng/ml versus 29,393 ng/ml) reduction in the low dose AA group. Immunohistochemistry for apoptosis demonstrated decreased TUNEL and caspase-3 expression in both low and high dose AA groups.

Conclusions

Ascorbic acid reduced the frequency and severity of renal injury in this murine model of CIN. Further work is required to establish whether AA can reduce the incidence of CIN in humans undergoing endovascular procedures.
Literature
1.
go back to reference Walsh SR, Tang TY, Boyle JR. Renal consequences of endovascular abdominal aortic aneurysm repair. J Endovasc Ther. 2008;15:73–82.CrossRefPubMed Walsh SR, Tang TY, Boyle JR. Renal consequences of endovascular abdominal aortic aneurysm repair. J Endovasc Ther. 2008;15:73–82.CrossRefPubMed
2.
3.
go back to reference Rihal CS, Textor SC, Grill DE, et al. Incidence and prognostic importance of acute renal failure after percutaneous coronary intervention. Circulation. 2002;105:2259–64.CrossRefPubMed Rihal CS, Textor SC, Grill DE, et al. Incidence and prognostic importance of acute renal failure after percutaneous coronary intervention. Circulation. 2002;105:2259–64.CrossRefPubMed
4.
go back to reference McCullough PA, Wolyn R, Rocher LL, Levin RN, O’Neill WW. Acute renal failure after coronary intervention: Incidence, risk factors, and relationship to mortality. Am J Med. 1997;103:368–75.CrossRefPubMed McCullough PA, Wolyn R, Rocher LL, Levin RN, O’Neill WW. Acute renal failure after coronary intervention: Incidence, risk factors, and relationship to mortality. Am J Med. 1997;103:368–75.CrossRefPubMed
5.
go back to reference Matsumura J, Brewster D, Makaroun M. A multicentre controlled clinical trial of open versus endovascular treatment of abdominal aortic aneurysm. J Vasc Surg. 2003;37:262–71.CrossRefPubMed Matsumura J, Brewster D, Makaroun M. A multicentre controlled clinical trial of open versus endovascular treatment of abdominal aortic aneurysm. J Vasc Surg. 2003;37:262–71.CrossRefPubMed
6.
go back to reference Johnston K. Multicentre prospective study of non-ruptured abdominal aortic aneurysm. Part II. Variable predicting morbidity and mortality. J Vasc Surg. 1989;9:437–47.CrossRefPubMed Johnston K. Multicentre prospective study of non-ruptured abdominal aortic aneurysm. Part II. Variable predicting morbidity and mortality. J Vasc Surg. 1989;9:437–47.CrossRefPubMed
7.
go back to reference Kelly A, Dwamena B, Cronin P, Bernstein S, Carlos R. Meta-analysis: Effectiveness of drugs for preventing contrast-induced nephropathy. Ann Intern Med. 2008;148(4):284–94.CrossRefPubMed Kelly A, Dwamena B, Cronin P, Bernstein S, Carlos R. Meta-analysis: Effectiveness of drugs for preventing contrast-induced nephropathy. Ann Intern Med. 2008;148(4):284–94.CrossRefPubMed
8.
go back to reference Moore N, Lapsley M, Norden A, Firth J, Gaunt M, Varty K, Boyle J. Does N-acetylcysteine prevent contrast-induced nephropathy during endovascular AAA repair? A randomised controlled pilot study. J Endovasc Ther. 2006;13:660–6.CrossRefPubMed Moore N, Lapsley M, Norden A, Firth J, Gaunt M, Varty K, Boyle J. Does N-acetylcysteine prevent contrast-induced nephropathy during endovascular AAA repair? A randomised controlled pilot study. J Endovasc Ther. 2006;13:660–6.CrossRefPubMed
9.
go back to reference O’Sullivan S, Healy DA, Moloney MC, Grace PA, Walsh SR. The role of N-acetylcysteine in the prevention of contrast-induced nephropathy in patients undergoing peripheral angiography: A structured review and meta-analysis. Angiology. 2013;64(8):576–82. doi:10.1177/0003319712467223. Review. PMID:23188834. O’Sullivan S, Healy DA, Moloney MC, Grace PA, Walsh SR. The role of N-acetylcysteine in the prevention of contrast-induced nephropathy in patients undergoing peripheral angiography: A structured review and meta-analysis. Angiology. 2013;64(8):576–82. doi:10.​1177/​0003319712467223​. Review. PMID:23188834.
10.
go back to reference Spargias K, Alexopoulos A, Kyrzopoulos S, Iacovis P, Greenwood D, Manginas A, Voudris V, Pavlides G, Buller C, Kremastinos D, Cokkinos D. Ascorbic acid prevents contrast-mediated nephropathy in patients with renal dysfunction undergoing coronary angiography or intervention. Circulation. 2004;110:2837–42.CrossRefPubMed Spargias K, Alexopoulos A, Kyrzopoulos S, Iacovis P, Greenwood D, Manginas A, Voudris V, Pavlides G, Buller C, Kremastinos D, Cokkinos D. Ascorbic acid prevents contrast-mediated nephropathy in patients with renal dysfunction undergoing coronary angiography or intervention. Circulation. 2004;110:2837–42.CrossRefPubMed
11.
go back to reference Tepel M, Van Der Giet M, Schwarzfeld C. Prevention of radiographic contrast-induced-agent-induced reductions in renal function by acetylcysteine. N Engl J Med. 2000;343:180–4.CrossRefPubMed Tepel M, Van Der Giet M, Schwarzfeld C. Prevention of radiographic contrast-induced-agent-induced reductions in renal function by acetylcysteine. N Engl J Med. 2000;343:180–4.CrossRefPubMed
12.
go back to reference Zhou L, Chen H. Prevention of contrast-induced nephropathy with ascorbic acid. Int Med. 2012;51(6):531–5.CrossRef Zhou L, Chen H. Prevention of contrast-induced nephropathy with ascorbic acid. Int Med. 2012;51(6):531–5.CrossRef
13.
go back to reference Boscheri A, Weinbrenner C, Botzek B, Revnen K, Kublisch E, Strasser RH. Failure of ascorbic acid to prevent contrast-media induced nephropathy in patients with renal dysfunction. Clin Nephrol. 2007;68(5):279–86.CrossRefPubMed Boscheri A, Weinbrenner C, Botzek B, Revnen K, Kublisch E, Strasser RH. Failure of ascorbic acid to prevent contrast-media induced nephropathy in patients with renal dysfunction. Clin Nephrol. 2007;68(5):279–86.CrossRefPubMed
14.
go back to reference Brezis M, Rosen S. Hypoxia of the renal medulla—its implications for disease. N Engl J Med. 1995;332:647–55.CrossRefPubMed Brezis M, Rosen S. Hypoxia of the renal medulla—its implications for disease. N Engl J Med. 1995;332:647–55.CrossRefPubMed
15.
go back to reference Katholi RE, Woods Jr WT, Taylor GJ, Deitrick CL, Womack KA, Katholi CR, McCann WP. Oxygen free radicals and contrast nephropathy. Am J Kidney Dis. 1998;32:64–71.CrossRefPubMed Katholi RE, Woods Jr WT, Taylor GJ, Deitrick CL, Womack KA, Katholi CR, McCann WP. Oxygen free radicals and contrast nephropathy. Am J Kidney Dis. 1998;32:64–71.CrossRefPubMed
16.
go back to reference Tee H, Jan M, Bae S. A1 adenosine receptor knockout mice are protected against acute radiocontrast nephropathy in vivo. Am J Physiol Renal. 2006;290(6):1367–75.CrossRef Tee H, Jan M, Bae S. A1 adenosine receptor knockout mice are protected against acute radiocontrast nephropathy in vivo. Am J Physiol Renal. 2006;290(6):1367–75.CrossRef
17.
go back to reference Quintavalle C, Brenca M, De Micco F, Fiore D, Romano S, Romano MF, Apone F, Bianco A, Zabatta MA, Troncone G, Briguori C, Condorelli G. In vivo and in vitro assessment of pathways involved in contrast media-induced renal cell apoptosis. Cell Death Dis. 2011;2:e155.CrossRefPubMedPubMedCentral Quintavalle C, Brenca M, De Micco F, Fiore D, Romano S, Romano MF, Apone F, Bianco A, Zabatta MA, Troncone G, Briguori C, Condorelli G. In vivo and in vitro assessment of pathways involved in contrast media-induced renal cell apoptosis. Cell Death Dis. 2011;2:e155.CrossRefPubMedPubMedCentral
18.
go back to reference Norden AG, Lapsley M, Unwin RJ. Urine retinol-binding protein 4: a functional biomarker of the proximal renal tubule. Adv Clin Chem. 2014;63:85–122.CrossRefPubMed Norden AG, Lapsley M, Unwin RJ. Urine retinol-binding protein 4: a functional biomarker of the proximal renal tubule. Adv Clin Chem. 2014;63:85–122.CrossRefPubMed
20.
go back to reference Ambler GK, Coughlin PA, Hayes PD, Varty K, Gohel MS. Boyle JR Incidence and Outcomes of Severe Renal Impairment Following Ruptured Abdominal Aortic Aneurysm Repair. Eur J Vasc Endovasc Surg. 2015;50(4):443–9.CrossRefPubMed Ambler GK, Coughlin PA, Hayes PD, Varty K, Gohel MS. Boyle JR Incidence and Outcomes of Severe Renal Impairment Following Ruptured Abdominal Aortic Aneurysm Repair. Eur J Vasc Endovasc Surg. 2015;50(4):443–9.CrossRefPubMed
21.
go back to reference Weisbord SD, Kip KE, Saul MI, Palevsky PM. Defining clinically significant radiocontrast nephropathy. J Am Soc Nephrol. 2003;14:280A–1A. Weisbord SD, Kip KE, Saul MI, Palevsky PM. Defining clinically significant radiocontrast nephropathy. J Am Soc Nephrol. 2003;14:280A–1A.
22.
go back to reference Sadat U, Walsh SR, Norden AG, Gillard JH, Boyle JR. Does oral N-acetylcysteine reduce contrast induced renal injury in patients with peripheral arterial disease undergoing peripheral angiography? A randomized-controlled study. Angiology. 2011;62:225–30.CrossRefPubMed Sadat U, Walsh SR, Norden AG, Gillard JH, Boyle JR. Does oral N-acetylcysteine reduce contrast induced renal injury in patients with peripheral arterial disease undergoing peripheral angiography? A randomized-controlled study. Angiology. 2011;62:225–30.CrossRefPubMed
23.
go back to reference Noorani A, Sadat U, Chowdhury MM, Rollins KE, Harrison SC, Usman A, Burling K, Nordon AG, Boyle JR. Use of urinary biomarkers for assessment of renal injury in patients undergoing EVAR. Angiology. 2016. [Epub ahead of print]. Noorani A, Sadat U, Chowdhury MM, Rollins KE, Harrison SC, Usman A, Burling K, Nordon AG, Boyle JR. Use of urinary biomarkers for assessment of renal injury in patients undergoing EVAR. Angiology. 2016. [Epub ahead of print].
24.
go back to reference Tumlin J, Stacul F, Adam A, Becker CR, Davidson C, Lameire N, McCullough PA. CIN Consensus Working Panel. Pathophysiology of contrast-induced nephropathy. Am J Cardiol. 2006;98(6):14–20.CrossRef Tumlin J, Stacul F, Adam A, Becker CR, Davidson C, Lameire N, McCullough PA. CIN Consensus Working Panel. Pathophysiology of contrast-induced nephropathy. Am J Cardiol. 2006;98(6):14–20.CrossRef
25.
go back to reference Seeliger E, Sendeski M, Rihal CS, Persson PB. Contrast-induced kidney injury: mechanisms. Risk factors, and prevention. Eur Heart J. 2012;33(16):2007–15.CrossRefPubMed Seeliger E, Sendeski M, Rihal CS, Persson PB. Contrast-induced kidney injury: mechanisms. Risk factors, and prevention. Eur Heart J. 2012;33(16):2007–15.CrossRefPubMed
26.
go back to reference Sadat U, Usman A, Gillard JH, Boyle JR. Does ascorbic acid protect against contrast-induced acute kidney injury in patients undergoing coronary angiography: a systematic review with meta-analysis of randomized, controlled trials. J Am Coll Cardiol. 2013;62(23):2167–75.CrossRefPubMed Sadat U, Usman A, Gillard JH, Boyle JR. Does ascorbic acid protect against contrast-induced acute kidney injury in patients undergoing coronary angiography: a systematic review with meta-analysis of randomized, controlled trials. J Am Coll Cardiol. 2013;62(23):2167–75.CrossRefPubMed
Metadata
Title
Ascorbic acid ameliorates renal injury in a murine model of contrast-induced nephropathy
Authors
K. Rollins
A. Noorani
L. Janeckova
T. Jones
M. Griffiths
M. P. Baker
J. R. Boyle
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2017
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-017-0498-5

Other articles of this Issue 1/2017

BMC Nephrology 1/2017 Go to the issue