Skip to main content
Top
Published in: BMC Nephrology 1/2017

Open Access 01-12-2017 | Technical advance

A new prescription model for regional citrate anticoagulation in therapeutic plasma exchanges

Authors: Sébastien Kissling, Cécile Legallais, Menno Pruijm, Daniel Teta, Bruno Vogt, Michel Burnier, Eric Rondeau, Christophe Ridel

Published in: BMC Nephrology | Issue 1/2017

Login to get access

Abstract

Background

Regional citrate anticoagulation (RCA) is proposed for various extracorporeal purification techniques to overcome the risk of bleeding that might result from systemic anticoagulation. Yet, no individualized treatment protocol has been proposed for therapeutic plasma exchange (TPE) so far. The objective of this study was to assess the determinants of blood citrate concentration needed and to develop an individualized RCA protocol useful for clinical practice.

Methods

The study population included 14 patients who underwent a total of 47 TPE sessions. Citrate was infused pre-plasmafilter. Post-plasmafilter and systemic plasma ionized calcium concentrations were measured at standardized time intervals. An algorithm was proposed for the supplementation of calcium. During the discovery phase, citrate was infused at a fixed starting rate, and adapted accordingly to obtained post-plasmafilter ionized calcium levels. Using a mathematical approach, an algorithm was thereafter developed for individualized prescriptions of citrate.

Results

Pre-treatment values of hematocrit and plasma ionized calcium were the main determinants of the required rate of citrate infusion. These can be integrated into a final equation enabling to individualize the prescription. A prefilter ionized calcium concentration between 0.24 and 0.33 mmol/l prevented coagulation of the extracorporeal circuit. Significant hypocalcemia occurred in 8.5% of treatments. There were no significant acid–base disturbances.

Conclusion

We propose a new protocol, which enables for the first time to individualize the prescription of regional citrate anticoagulation during TPE, in an efficient manner. The immediately obtained regional anticoagulation protects against both the risk of coagulation of the membrane and the exposure to an excess of citrate.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kaplan AA. Therapeutic plasma exchange: core curriculum 2008. Am J Kidney Dis. 2008;52(6):1180–96.CrossRefPubMed Kaplan AA. Therapeutic plasma exchange: core curriculum 2008. Am J Kidney Dis. 2008;52(6):1180–96.CrossRefPubMed
2.
go back to reference Pinnick RV, Wiegmann TB, Diederich DA. Regional citrate anticoagulation for hemodialysis in the patient at high risk for bleeding. N Engl J Med. 1983;308(5):258–61.CrossRefPubMed Pinnick RV, Wiegmann TB, Diederich DA. Regional citrate anticoagulation for hemodialysis in the patient at high risk for bleeding. N Engl J Med. 1983;308(5):258–61.CrossRefPubMed
3.
go back to reference Gritters M, Grooteman MP, Schoorl M, Bartels PC, Scheffer PG, Teerlink T, et al. Citrate anticoagulation abolishes degranulation of polymorphonuclear cells and platelets and reduces oxidative stress during haemodialysis. Nephrol Dial Transplant. 2006;21(1):153–9.CrossRefPubMed Gritters M, Grooteman MP, Schoorl M, Bartels PC, Scheffer PG, Teerlink T, et al. Citrate anticoagulation abolishes degranulation of polymorphonuclear cells and platelets and reduces oxidative stress during haemodialysis. Nephrol Dial Transplant. 2006;21(1):153–9.CrossRefPubMed
4.
go back to reference Betz C, Buettner S, Geiger H, Jung O. Regional citrate anticoagulation in therapeutic plasma exchange with fresh frozen plasma--a modified protocol. Int J Artif Organs. 2013;36(11):803–11.CrossRefPubMed Betz C, Buettner S, Geiger H, Jung O. Regional citrate anticoagulation in therapeutic plasma exchange with fresh frozen plasma--a modified protocol. Int J Artif Organs. 2013;36(11):803–11.CrossRefPubMed
5.
go back to reference Antonic M, Gubensek J, Buturovic-Ponikvar J, Ponikvar R. Treatment efficacy and safety during plasma exchange with citrate anticoagulation: a randomized study of 4 versus 15% citrate. Artif Organs. 2016;40(4):368–75.CrossRefPubMed Antonic M, Gubensek J, Buturovic-Ponikvar J, Ponikvar R. Treatment efficacy and safety during plasma exchange with citrate anticoagulation: a randomized study of 4 versus 15% citrate. Artif Organs. 2016;40(4):368–75.CrossRefPubMed
6.
go back to reference Monchi M, Berghmans D, Ledoux D, Canivet JL, Dubois B, Damas P. Citrate vs. heparin for anticoagulation in continuous venovenous hemofiltration: a prospective randomized study. Intensive Care Med. 2004;30(2):260–5.CrossRefPubMed Monchi M, Berghmans D, Ledoux D, Canivet JL, Dubois B, Damas P. Citrate vs. heparin for anticoagulation in continuous venovenous hemofiltration: a prospective randomized study. Intensive Care Med. 2004;30(2):260–5.CrossRefPubMed
7.
go back to reference Kozik-Jaromin J, Nier V, Heemann U, Kreymann B, Bohler J. Citrate pharmacokinetics and calcium levels during high-flux dialysis with regional citrate anticoagulation. Nephrol Dial Transplant. 2009;24(7):2244–51.CrossRefPubMedPubMedCentral Kozik-Jaromin J, Nier V, Heemann U, Kreymann B, Bohler J. Citrate pharmacokinetics and calcium levels during high-flux dialysis with regional citrate anticoagulation. Nephrol Dial Transplant. 2009;24(7):2244–51.CrossRefPubMedPubMedCentral
8.
go back to reference Buturovic-Ponikvar J, Pernat AM, Ponikvar R. Citrate anticoagulation during plasma exchange in a patient with thrombotic thrombocytopenic purpura: short heparin-free hemodialysis helps to attenuate citrate load. Ther Apher Dial. 2005;9(3):258–61.CrossRefPubMed Buturovic-Ponikvar J, Pernat AM, Ponikvar R. Citrate anticoagulation during plasma exchange in a patient with thrombotic thrombocytopenic purpura: short heparin-free hemodialysis helps to attenuate citrate load. Ther Apher Dial. 2005;9(3):258–61.CrossRefPubMed
9.
go back to reference Kramer L, Bauer E, Joukhadar C, Strobl W, Gendo A, Madl C, et al. Citrate pharmacokinetics and metabolism in cirrhotic and noncirrhotic critically ill patients. Crit Care Med. 2003;31(10):2450–5.CrossRefPubMed Kramer L, Bauer E, Joukhadar C, Strobl W, Gendo A, Madl C, et al. Citrate pharmacokinetics and metabolism in cirrhotic and noncirrhotic critically ill patients. Crit Care Med. 2003;31(10):2450–5.CrossRefPubMed
10.
go back to reference Kutsogiannis DJ, Mayers I, Chin WD, Gibney RT. Regional citrate anticoagulation in continuous venovenous hemodiafiltration. Am J Kidney Dis. 2000;35(5):802–11.CrossRefPubMed Kutsogiannis DJ, Mayers I, Chin WD, Gibney RT. Regional citrate anticoagulation in continuous venovenous hemodiafiltration. Am J Kidney Dis. 2000;35(5):802–11.CrossRefPubMed
11.
go back to reference Morgera S, Schneider M, Slowinski T, Vargas-Hein O, Zuckermann-Becker H, Peters H, et al. A safe citrate anticoagulation protocol with variable treatment efficacy and excellent control of the acid–base status. Crit Care Med. 2009;37(6):2018–24.CrossRefPubMed Morgera S, Schneider M, Slowinski T, Vargas-Hein O, Zuckermann-Becker H, Peters H, et al. A safe citrate anticoagulation protocol with variable treatment efficacy and excellent control of the acid–base status. Crit Care Med. 2009;37(6):2018–24.CrossRefPubMed
12.
go back to reference Meier-Kriesche HU, Gitomer J, Finkel K, DuBose T. Increased total to ionized calcium ratio during continuous venovenous hemodialysis with regional citrate anticoagulation. Crit Care Med. 2001;29(4):748–52.CrossRefPubMed Meier-Kriesche HU, Gitomer J, Finkel K, DuBose T. Increased total to ionized calcium ratio during continuous venovenous hemodialysis with regional citrate anticoagulation. Crit Care Med. 2001;29(4):748–52.CrossRefPubMed
Metadata
Title
A new prescription model for regional citrate anticoagulation in therapeutic plasma exchanges
Authors
Sébastien Kissling
Cécile Legallais
Menno Pruijm
Daniel Teta
Bruno Vogt
Michel Burnier
Eric Rondeau
Christophe Ridel
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2017
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-017-0494-9

Other articles of this Issue 1/2017

BMC Nephrology 1/2017 Go to the issue