Skip to main content
Top
Published in: BMC Nephrology 1/2017

Open Access 01-12-2017 | Research article

Protective effect of quinacrine against glycerol-induced acute kidney injury in rats

Authors: Abdulrahman K. Al Asmari, Khalid Tariq Al Sadoon, Ali Ahmed Obaid, Deivakadatcham Yesunayagam, Mohammad Tariq

Published in: BMC Nephrology | Issue 1/2017

Login to get access

Abstract

Background

Acute kidney injury (AKI) is a serious clinical problem with high rate of mortality and morbidity. Currently used prophylactic and therapeutic strategies to address AKI are limited and warrant further studies. In the present study an attempt was made to investigate the effect of quinacrine, a phospholipase A2 inhibitor against glycerol induced AKI in rats.

Methods

Adult female Wistar rats were divided in to five groups. After 24 h of water deprivation rats in groups 3, 4 and 5 received an intraperitoneal injection of quinacrine (3 mg/kg, 10 mg/kg and 30 mg/kg of body weight respectively). Thirty minutes after the first injection of quinacrine animals in groups 3, 4 and 5 received an intramuscular injection of 25% glycerol (10 ml/kg of body weight). The animals in group 2 received 25% glycerol (10 ml/kg of body weight) only whereas rats in group 1 served as control . The quinacrine administration was continued once daily for three days, on the fourth day animals were sacrificed, blood and kidney were collected for various biochemical and histopathological studies.

Results

Glycerol treatment produced significant renal structural abnormalities and functional impairment (increased urea and creatinine). Increase in myeloperoxidase (MPO) and malondialdehyde (MDA) clearly suggested the involvement of oxidative stress and neutrophilic activity following glycerol administration. Quinacrine dose dependently attenuated glycerol induced structural and functional changes in kidney.

Conclusion

The reversal of glycerol induced AKI by quinacrine points towards a role of phospholipase A2 (PLA2) in the pathogenesis of renal injury. The result of this study suggests that quinacrine may offer an alternative mode of treatment for AKI.
Literature
1.
go back to reference Liaño F, Pascual J. Epidemiology of acute renal failure: a prospective, multicenter, community-based study. Madrid Acute Renal Failure Study Group. Kidney Int. 1996;50(3):811–8.CrossRefPubMed Liaño F, Pascual J. Epidemiology of acute renal failure: a prospective, multicenter, community-based study. Madrid Acute Renal Failure Study Group. Kidney Int. 1996;50(3):811–8.CrossRefPubMed
2.
go back to reference Wilson DR, Thiel G, Arce ML, Oken DE. Glycerol induced hemoglobinuric acute renal failure in the rat. 3. Micropuncture study of the effects of mannitol and isotonic saline on individual nephron function. Arce Nephron. 1967;4(6):337–55.CrossRefPubMed Wilson DR, Thiel G, Arce ML, Oken DE. Glycerol induced hemoglobinuric acute renal failure in the rat. 3. Micropuncture study of the effects of mannitol and isotonic saline on individual nephron function. Arce Nephron. 1967;4(6):337–55.CrossRefPubMed
3.
go back to reference Abul-Ezz SR, Walker PD, Shah SV. Role of glutathione in an animal model of myoglobinuric acute renal failure. Proc Natl Acad Sci U S A. 1991;88(21):9833–7.CrossRefPubMedPubMedCentral Abul-Ezz SR, Walker PD, Shah SV. Role of glutathione in an animal model of myoglobinuric acute renal failure. Proc Natl Acad Sci U S A. 1991;88(21):9833–7.CrossRefPubMedPubMedCentral
4.
go back to reference Chander V, Chopra K. Molsidomine a nitric oxide donor and L-arginine protects against rhabdomyolysis-induced myoglobinuric acute renal failure. Biochim Biophys Acta. 2005;1723(1–3):208–14.CrossRefPubMed Chander V, Chopra K. Molsidomine a nitric oxide donor and L-arginine protects against rhabdomyolysis-induced myoglobinuric acute renal failure. Biochim Biophys Acta. 2005;1723(1–3):208–14.CrossRefPubMed
5.
go back to reference Malik GH. Rhabdomyolysis and myoglobin-induced acute renal failure. Saudi J Kidney Dis Transpl. 1998;9(3):273–84.PubMed Malik GH. Rhabdomyolysis and myoglobin-induced acute renal failure. Saudi J Kidney Dis Transpl. 1998;9(3):273–84.PubMed
6.
go back to reference Efstratiadis G, Voulgaridou A, Nikiforou D, Kyventidis A, Kourkouni E, Vergoulas G. Rhabdomyolysis updated. Hippokratia. 2007;11(3):129–37.PubMedPubMedCentral Efstratiadis G, Voulgaridou A, Nikiforou D, Kyventidis A, Kourkouni E, Vergoulas G. Rhabdomyolysis updated. Hippokratia. 2007;11(3):129–37.PubMedPubMedCentral
7.
go back to reference Hsu CH, Kurtz TW, Waldinger TP. Cardiac output and renal blood flow in glycerol-induced acute renal failure in the rat. Circ Res. 1977;40(2):178–82.CrossRefPubMed Hsu CH, Kurtz TW, Waldinger TP. Cardiac output and renal blood flow in glycerol-induced acute renal failure in the rat. Circ Res. 1977;40(2):178–82.CrossRefPubMed
8.
go back to reference Zager RA, Burkhart KM, Conrad DS, Gmur DJ, Zager RA. Rhabdomyolysis and myohemoglobinuric acute renal failure. Kidney Int. 1996;49(2):314–26.CrossRefPubMed Zager RA, Burkhart KM, Conrad DS, Gmur DJ, Zager RA. Rhabdomyolysis and myohemoglobinuric acute renal failure. Kidney Int. 1996;49(2):314–26.CrossRefPubMed
9.
go back to reference Zager RA, Burkhart KM, Conrad DS, Gmur DJ. Iron, hemeoxygenase, and glutathione: effects on myohemoglobinuric proximal tubular injury. Kidney Int. 1995;48(5):1624–34.CrossRefPubMed Zager RA, Burkhart KM, Conrad DS, Gmur DJ. Iron, hemeoxygenase, and glutathione: effects on myohemoglobinuric proximal tubular injury. Kidney Int. 1995;48(5):1624–34.CrossRefPubMed
10.
go back to reference Zager RA, Burkhart KM. Differential effects of glutathione and cysteine on Fe2+, Fe3+, H2O2 and myoglobin-induced proximal tubular cell attack. Kidney Int. 1998;53(6):1661–72.CrossRefPubMed Zager RA, Burkhart KM. Differential effects of glutathione and cysteine on Fe2+, Fe3+, H2O2 and myoglobin-induced proximal tubular cell attack. Kidney Int. 1998;53(6):1661–72.CrossRefPubMed
11.
go back to reference Moore KP, et al. A causative role for redox cycling of myoglobin and its inhibition by alkalinization in the pathogenesis and treatment of rhabdomyolysis-induced renal failure. J Biol Chem. 1998;273(48):31731–7.CrossRefPubMed Moore KP, et al. A causative role for redox cycling of myoglobin and its inhibition by alkalinization in the pathogenesis and treatment of rhabdomyolysis-induced renal failure. J Biol Chem. 1998;273(48):31731–7.CrossRefPubMed
12.
go back to reference Homsi E, Janino P, de Faria JB. Role of caspases on cell death, inflammation, and cell cycle in glycerol-induced acute renal failure. Kidney Int. 2006;69(8):1385–92.CrossRefPubMed Homsi E, Janino P, de Faria JB. Role of caspases on cell death, inflammation, and cell cycle in glycerol-induced acute renal failure. Kidney Int. 2006;69(8):1385–92.CrossRefPubMed
13.
go back to reference Zager RA, Sacks BM, Burkhart KM, Williams AC. Plasma membrane phospholipid integrity and orientation during hypoxic and toxic proximal tubular attack. Kidney Int. 1999;56(1):104–17.CrossRefPubMed Zager RA, Sacks BM, Burkhart KM, Williams AC. Plasma membrane phospholipid integrity and orientation during hypoxic and toxic proximal tubular attack. Kidney Int. 1999;56(1):104–17.CrossRefPubMed
14.
go back to reference Farber JL, Chien KR, Mittnacht Jr S. Myocardial ischemia: the pathogenesis of irreversible cell injury in ischemia. Am J Pathol. 1981;102(2):271–81.PubMedPubMedCentral Farber JL, Chien KR, Mittnacht Jr S. Myocardial ischemia: the pathogenesis of irreversible cell injury in ischemia. Am J Pathol. 1981;102(2):271–81.PubMedPubMedCentral
15.
go back to reference Humes HD, Jackson NM, O’Connor RP, Hunt DA, White MD. Pathogenetic mechanisms of nephrotoxicity: insights into cyclosporine nephrotoxicity. Transplant Proc. 1985;17(4 Suppl 1):51–62.PubMed Humes HD, Jackson NM, O’Connor RP, Hunt DA, White MD. Pathogenetic mechanisms of nephrotoxicity: insights into cyclosporine nephrotoxicity. Transplant Proc. 1985;17(4 Suppl 1):51–62.PubMed
16.
go back to reference Singer SJ, Nicolson GL. The fluid mosaic model of the structure of cell membranes. Science. 1972;175(4023):720–31.CrossRefPubMed Singer SJ, Nicolson GL. The fluid mosaic model of the structure of cell membranes. Science. 1972;175(4023):720–31.CrossRefPubMed
17.
go back to reference Rubalcava B, Rodbell M. The role of acidic phospholipids in glucagon action on rat liver adenylate cyclase. J Biol Chem. 1973;248(11):3831–7.PubMed Rubalcava B, Rodbell M. The role of acidic phospholipids in glucagon action on rat liver adenylate cyclase. J Biol Chem. 1973;248(11):3831–7.PubMed
18.
go back to reference Dahl JL, Hokin LE. The sodium-potassium adenosine-triphosphatase. Annu Rev Biochem. 1974;43:327–55.CrossRefPubMed Dahl JL, Hokin LE. The sodium-potassium adenosine-triphosphatase. Annu Rev Biochem. 1974;43:327–55.CrossRefPubMed
19.
go back to reference Cullis PR, deKruijff B, Hope MJ, Nayar R. Phospholipids and membrane transport. Can J Biochem. 1980;58:1091–100.CrossRefPubMed Cullis PR, deKruijff B, Hope MJ, Nayar R. Phospholipids and membrane transport. Can J Biochem. 1980;58:1091–100.CrossRefPubMed
20.
go back to reference Green DE, Fry M, Blondin GA. Phospholipids as the molecular instruments of ion and solute transport in biological membranes. Proc Natl Acad Sci U S A. 1980;77(1):257–61.CrossRefPubMedPubMedCentral Green DE, Fry M, Blondin GA. Phospholipids as the molecular instruments of ion and solute transport in biological membranes. Proc Natl Acad Sci U S A. 1980;77(1):257–61.CrossRefPubMedPubMedCentral
21.
go back to reference Chien KR, Abrams J, Serroni A, Martin JT, Farber JL. Accelerated phospholipid degradation and associated membrane dysfunction in irreversible, ischemic liver cell injury. J Biol Chem. 1978;253(13):4809–17.PubMed Chien KR, Abrams J, Serroni A, Martin JT, Farber JL. Accelerated phospholipid degradation and associated membrane dysfunction in irreversible, ischemic liver cell injury. J Biol Chem. 1978;253(13):4809–17.PubMed
22.
go back to reference Chien KR, Reeves JP, Buja LM, Bonte F, Parkey RW, Willerson JT. Phospholipid alterations in canine ischemic myocardium. Temporal and topographical correlations with Tc-99 m-PPi accumulation and an in vitro sarcolemmal Ca + 2 permeability defect. Circ Res. 1981;48(5):711–9.CrossRefPubMed Chien KR, Reeves JP, Buja LM, Bonte F, Parkey RW, Willerson JT. Phospholipid alterations in canine ischemic myocardium. Temporal and topographical correlations with Tc-99 m-PPi accumulation and an in vitro sarcolemmal Ca + 2 permeability defect. Circ Res. 1981;48(5):711–9.CrossRefPubMed
23.
go back to reference Matthys E, Patel Y, Kreisberg J, Stewart JH, Venkatachalam M. Lipid alterations induced by renal ischemia: pathogenic factor in membrane damage. Kidney Int. 1984;26(2):153–61.CrossRefPubMed Matthys E, Patel Y, Kreisberg J, Stewart JH, Venkatachalam M. Lipid alterations induced by renal ischemia: pathogenic factor in membrane damage. Kidney Int. 1984;26(2):153–61.CrossRefPubMed
24.
go back to reference Lee JC, Simonyi A, Sun AY, Sun GY. Phospholipases A2 and neural membrane dynami cs: implications for Alzheimer’s disease. J Neurochem. 2011;116(5):813–9.CrossRefPubMedPubMedCentral Lee JC, Simonyi A, Sun AY, Sun GY. Phospholipases A2 and neural membrane dynami cs: implications for Alzheimer’s disease. J Neurochem. 2011;116(5):813–9.CrossRefPubMedPubMedCentral
26.
go back to reference Dennis EA, Rhee SG, Billah MM, Hannun YA. Role of phospholipase in generating lipid second messengers in signal transduction. FASEB J. 1991;5(7):2068–77.PubMed Dennis EA, Rhee SG, Billah MM, Hannun YA. Role of phospholipase in generating lipid second messengers in signal transduction. FASEB J. 1991;5(7):2068–77.PubMed
27.
go back to reference Vigo C, Lewis GP, Piper PJ. Mechanisms of inhibition of phospholipase A2. Biochem Pharmacol. 1980;29(4):623–7.CrossRefPubMed Vigo C, Lewis GP, Piper PJ. Mechanisms of inhibition of phospholipase A2. Biochem Pharmacol. 1980;29(4):623–7.CrossRefPubMed
28.
go back to reference Korrapati MC, Shaner BE, Schnellmann RG. Recovery from glycerol-induced acute kidney injury is accelerated by suramin. J Pharmacol Exp Ther. 2012;341(1):126–36.CrossRefPubMedPubMedCentral Korrapati MC, Shaner BE, Schnellmann RG. Recovery from glycerol-induced acute kidney injury is accelerated by suramin. J Pharmacol Exp Ther. 2012;341(1):126–36.CrossRefPubMedPubMedCentral
30.
go back to reference Barone FC, Hillegass LM, Price WJ, White RF, Lee EV, Feuerstein GZ, Sarau HM, Clark RK, Griswold DE. Polymorphonuclear leukocyte infiltration into cerebral focal ischemic tissue: myeloperoxidase activity assay and histologic verification. J Neurosci Res. 1991;29(3):336–45.CrossRefPubMed Barone FC, Hillegass LM, Price WJ, White RF, Lee EV, Feuerstein GZ, Sarau HM, Clark RK, Griswold DE. Polymorphonuclear leukocyte infiltration into cerebral focal ischemic tissue: myeloperoxidase activity assay and histologic verification. J Neurosci Res. 1991;29(3):336–45.CrossRefPubMed
31.
go back to reference Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351–8.CrossRefPubMed Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351–8.CrossRefPubMed
32.
go back to reference Ustundag S, Sen S, Yalcin O, Ciftci S, Demirkan B, Ture M. L-Carnitine ameliorates glycerol-induced myoglobinuric acute renal failure in rats. Ren Fail. 2009;31(2):124–33.CrossRefPubMed Ustundag S, Sen S, Yalcin O, Ciftci S, Demirkan B, Ture M. L-Carnitine ameliorates glycerol-induced myoglobinuric acute renal failure in rats. Ren Fail. 2009;31(2):124–33.CrossRefPubMed
33.
go back to reference Bowmer CJ, Collis MG, Yates MS. Effect of the adenosine antagonist 8-phenyltheophylline on glycerol-induced acute renal failure in the rat. Br J Pharmacol. 1986;88(1):205–12.CrossRefPubMedPubMedCentral Bowmer CJ, Collis MG, Yates MS. Effect of the adenosine antagonist 8-phenyltheophylline on glycerol-induced acute renal failure in the rat. Br J Pharmacol. 1986;88(1):205–12.CrossRefPubMedPubMedCentral
34.
go back to reference Al Khader A, al Sulaiman M, Kishore PN, Morais C, Tariq M. Quinacrine attenuates cyclosporine-induced nephrotoxicity in rats. Transplantation. 1996;62(4):427–35.CrossRefPubMed Al Khader A, al Sulaiman M, Kishore PN, Morais C, Tariq M. Quinacrine attenuates cyclosporine-induced nephrotoxicity in rats. Transplantation. 1996;62(4):427–35.CrossRefPubMed
35.
go back to reference Al Moutaery AR, Tariq M. Effect of quinacrine, a phospholipase A2 inhibitor on stress and chemically induced gastroduodenal ulcers. Digestion. 1997;58(2):129–37.CrossRefPubMed Al Moutaery AR, Tariq M. Effect of quinacrine, a phospholipase A2 inhibitor on stress and chemically induced gastroduodenal ulcers. Digestion. 1997;58(2):129–37.CrossRefPubMed
36.
go back to reference Tariq M, Khan HA, Al Moutaery K, Al DS. Protective effect of quinacrine on striatal dopamine levels in 6-OHDA and MPTP models of Parkinsonism in rodents. Brain Res Bull. 2001;54(1):77–82.CrossRefPubMed Tariq M, Khan HA, Al Moutaery K, Al DS. Protective effect of quinacrine on striatal dopamine levels in 6-OHDA and MPTP models of Parkinsonism in rodents. Brain Res Bull. 2001;54(1):77–82.CrossRefPubMed
37.
go back to reference Chiariello M, Ambrosio G, Cappelli-Bigazzi M, Nevola E, Perrone-Filardi P, Marone G, Condorelli M. Inhibition of ischemia-induced phospholipase activation by quinacrine protects jeopardized myocardium in rats with coronary artery occlusion. J Pharmacol Exp Ther. 1987;241(2):560–8.PubMed Chiariello M, Ambrosio G, Cappelli-Bigazzi M, Nevola E, Perrone-Filardi P, Marone G, Condorelli M. Inhibition of ischemia-induced phospholipase activation by quinacrine protects jeopardized myocardium in rats with coronary artery occlusion. J Pharmacol Exp Ther. 1987;241(2):560–8.PubMed
38.
go back to reference Phillis JW. Cerebroprotective action of the phospholipase inhibitor quinacrine in the ischemia/reperfused gerbil hippocampus. Life Sci. 1996;58(6):L97–101.CrossRef Phillis JW. Cerebroprotective action of the phospholipase inhibitor quinacrine in the ischemia/reperfused gerbil hippocampus. Life Sci. 1996;58(6):L97–101.CrossRef
39.
go back to reference Estevez AY, Phillis J. The phospholipase A2 inhibitor, quinacrine, reduces infarct size in rats after transient middle cerebral artery occlusion. Brain Res. 1997;752(1–2):203–8.CrossRefPubMed Estevez AY, Phillis J. The phospholipase A2 inhibitor, quinacrine, reduces infarct size in rats after transient middle cerebral artery occlusion. Brain Res. 1997;752(1–2):203–8.CrossRefPubMed
40.
41.
go back to reference Duan SB, Liu FY, Luo JA, Wu HW, Liu RH, Peng YM, Yang XL. Nephrotoxicity of high- and low-osmolar contrast media. The protective role of amlodipine in a rat model. Acta Radiol. 2000;41(5):503–7.PubMed Duan SB, Liu FY, Luo JA, Wu HW, Liu RH, Peng YM, Yang XL. Nephrotoxicity of high- and low-osmolar contrast media. The protective role of amlodipine in a rat model. Acta Radiol. 2000;41(5):503–7.PubMed
42.
go back to reference Dennis EA. Diversity of group types, regulation, and function of phospholipase A2. J Biol Chem. 1994;269(18):13057–60.PubMed Dennis EA. Diversity of group types, regulation, and function of phospholipase A2. J Biol Chem. 1994;269(18):13057–60.PubMed
43.
go back to reference Balsinde J, Winstead MV, Dennis EA. Phospholipase A(2) regulation of arachidonic acid mobilization. FEBS Lett. 2002;531(1):2–6.CrossRefPubMed Balsinde J, Winstead MV, Dennis EA. Phospholipase A(2) regulation of arachidonic acid mobilization. FEBS Lett. 2002;531(1):2–6.CrossRefPubMed
44.
go back to reference Watson AJ, Stout RL, Adkinson Jr NF, Solez K, Whelton A. Selective inhibition of thromboxane synthesis in glycerol-induced acute renal failure. Am J Kidney Dis. 1986;8(1):26–30.CrossRefPubMed Watson AJ, Stout RL, Adkinson Jr NF, Solez K, Whelton A. Selective inhibition of thromboxane synthesis in glycerol-induced acute renal failure. Am J Kidney Dis. 1986;8(1):26–30.CrossRefPubMed
45.
go back to reference Hatziantoniou C, Papanikolaou N. Renal effects of the inhibitor of thromboxane A2-synthetase OKY-046. Experientia. 1986;42(6):613–5.CrossRefPubMed Hatziantoniou C, Papanikolaou N. Renal effects of the inhibitor of thromboxane A2-synthetase OKY-046. Experientia. 1986;42(6):613–5.CrossRefPubMed
46.
go back to reference Xu N. Effect of electroacupuncture at “taixi” point on plasma thromboxane A2 and prostacyclin in the rabbit with renal ischemia. Zhen Ci Yan Jiu. 1993;18(3):240–2.PubMed Xu N. Effect of electroacupuncture at “taixi” point on plasma thromboxane A2 and prostacyclin in the rabbit with renal ischemia. Zhen Ci Yan Jiu. 1993;18(3):240–2.PubMed
47.
go back to reference Gao JT, Liu SH, Yan YE, Wu Y, Wu HT, Xing C, Ge XM, Wang H, Zhao YQ, Fan M. Quinacrine protects neuronal cells against heat-induced injury. Cell Biol Int. 2009;33(8):874–81.CrossRefPubMed Gao JT, Liu SH, Yan YE, Wu Y, Wu HT, Xing C, Ge XM, Wang H, Zhao YQ, Fan M. Quinacrine protects neuronal cells against heat-induced injury. Cell Biol Int. 2009;33(8):874–81.CrossRefPubMed
48.
go back to reference Erman A, Azuri R, Raz A. Prostaglandin biosynthesis in rabbit kidney: mepacrine inhibits renomedullary cyclooxygenase. Biochem Pharmacol. 1984;33(1):79–82.CrossRefPubMed Erman A, Azuri R, Raz A. Prostaglandin biosynthesis in rabbit kidney: mepacrine inhibits renomedullary cyclooxygenase. Biochem Pharmacol. 1984;33(1):79–82.CrossRefPubMed
49.
go back to reference Limas C, Limas CJ. Enhanced renomedullary prostaglandin synthesis in spontaneously hypertensive rats: role of a phospholipase A2. Am J Physiol. 1979;236(1):H65–72.PubMed Limas C, Limas CJ. Enhanced renomedullary prostaglandin synthesis in spontaneously hypertensive rats: role of a phospholipase A2. Am J Physiol. 1979;236(1):H65–72.PubMed
50.
go back to reference Raz A. Mepacrine blockade of arachidonate-induced washed platelet aggregation: relationship to mepacrine inhibition of platelet cyclooxygenase. Thromb Haemost. 1983;50(4):784–6.PubMed Raz A. Mepacrine blockade of arachidonate-induced washed platelet aggregation: relationship to mepacrine inhibition of platelet cyclooxygenase. Thromb Haemost. 1983;50(4):784–6.PubMed
51.
go back to reference Bank N, Aynedjian HS. Role of thromboxane in impaired renal vasodilatation response to acetylcholine in hypercholesterolemic rats. J Clin Invest. 1992;89(5):1636–42.CrossRefPubMedPubMedCentral Bank N, Aynedjian HS. Role of thromboxane in impaired renal vasodilatation response to acetylcholine in hypercholesterolemic rats. J Clin Invest. 1992;89(5):1636–42.CrossRefPubMedPubMedCentral
52.
go back to reference Akcay A, Nguyen Q, Edelstein CL. Mediators of inflammation in acute kidney injury. Mediators Inflamm. 2009;2009:137072. Epub 2010 Feb 21.CrossRefPubMed Akcay A, Nguyen Q, Edelstein CL. Mediators of inflammation in acute kidney injury. Mediators Inflamm. 2009;2009:137072. Epub 2010 Feb 21.CrossRefPubMed
53.
go back to reference Deng LL, Zhong L, Lei JR, Tang L, Liu L, Xie SQ, Liao XH. Protective effect of lipoxin A4 against rhabdomyolysis-induced acute kidney injury in rats. Xi Bao Yu Fen ZiMian Yi XueZaZhi. 2012;28(9):907–10. Deng LL, Zhong L, Lei JR, Tang L, Liu L, Xie SQ, Liao XH. Protective effect of lipoxin A4 against rhabdomyolysis-induced acute kidney injury in rats. Xi Bao Yu Fen ZiMian Yi XueZaZhi. 2012;28(9):907–10.
54.
go back to reference Bolisetty S, Agarwal A. Neutrophils in acute kidney injury: not neutral any more. Kidney Int. 2009;75(7):674–6.CrossRefPubMed Bolisetty S, Agarwal A. Neutrophils in acute kidney injury: not neutral any more. Kidney Int. 2009;75(7):674–6.CrossRefPubMed
55.
go back to reference Takasaki J, Kawauchi Y, Urasaki T, Tanaka H, Usuda S, Masuho Y. Antibodies against type II phospholipase A2 prevent renal injury due to ischemia and reperfusion in rats. FEBS Lett. 1998;440(3):377–81.CrossRefPubMed Takasaki J, Kawauchi Y, Urasaki T, Tanaka H, Usuda S, Masuho Y. Antibodies against type II phospholipase A2 prevent renal injury due to ischemia and reperfusion in rats. FEBS Lett. 1998;440(3):377–81.CrossRefPubMed
56.
go back to reference Daniels I, Lindsay MA, Keany CI, Burden RP, Fletcher J, Haynes AP. Role of arachidonic acid and its metabolites in the priming of NADPH oxidase in human polymorphonuclear leukocytes by peritoneal dialysis effluent. Clin Diagn Lab Immunol. 1998;5(5):683–9.PubMedPubMedCentral Daniels I, Lindsay MA, Keany CI, Burden RP, Fletcher J, Haynes AP. Role of arachidonic acid and its metabolites in the priming of NADPH oxidase in human polymorphonuclear leukocytes by peritoneal dialysis effluent. Clin Diagn Lab Immunol. 1998;5(5):683–9.PubMedPubMedCentral
57.
go back to reference Kramer RM, Hession C, Johansen B, Hayes G, McGray P, Chow EP, Tizard R, Pepinsky RB. Structure and properties of a human non-pancreatic phospholipase A2. J Biol Chem. 1989;264(10):5768–75.PubMed Kramer RM, Hession C, Johansen B, Hayes G, McGray P, Chow EP, Tizard R, Pepinsky RB. Structure and properties of a human non-pancreatic phospholipase A2. J Biol Chem. 1989;264(10):5768–75.PubMed
58.
go back to reference Mayadas TN, Cullere X, Lowell CA. The multifaceted functions of neutrophils. Annu Rev Pathol. 2014;9:181–218.CrossRefPubMed Mayadas TN, Cullere X, Lowell CA. The multifaceted functions of neutrophils. Annu Rev Pathol. 2014;9:181–218.CrossRefPubMed
60.
go back to reference Dagher PC, Mai EM, Hato T, Lee SY, Anderson MD, Karozos SC, Mang HE, Knipe NL, Plotkin Z, Sutton TA. The p53 inhibitor pifithrin-α can stimulate fibrosis in a rat model of ischemic acute kidney injury. Am J Physiol Ren Physiol. 2012;302(2):F284–91.CrossRef Dagher PC, Mai EM, Hato T, Lee SY, Anderson MD, Karozos SC, Mang HE, Knipe NL, Plotkin Z, Sutton TA. The p53 inhibitor pifithrin-α can stimulate fibrosis in a rat model of ischemic acute kidney injury. Am J Physiol Ren Physiol. 2012;302(2):F284–91.CrossRef
61.
62.
go back to reference Komarova EA, Krivokrysenko V, Wang K, Neznanov N, Chernov MV, Komarov PG, Brennan ML, Golovkina TV, Rokhlin OW, Kuprash DV, Nedospasov SA, Hazen SL, Feinstein E, Gudkov AV. p53 is a suppressor of inflammatory response in mice. FASEB J. 2005;19(8):1030–2.PubMed Komarova EA, Krivokrysenko V, Wang K, Neznanov N, Chernov MV, Komarov PG, Brennan ML, Golovkina TV, Rokhlin OW, Kuprash DV, Nedospasov SA, Hazen SL, Feinstein E, Gudkov AV. p53 is a suppressor of inflammatory response in mice. FASEB J. 2005;19(8):1030–2.PubMed
64.
go back to reference Gasparian AV, Burkhart CA, Purmal AA, Brodsky L, Pal M, Saranadasa M, Bosykh DA, Commane M, Guryanova OA, Pal S, Safina A, Sviridov S, Koman IE, Veith J, Komar AA, Gudkov AV, Gurova KV. Curaxins: anticancer compounds that simultaneously suppress NF-κB and activate p53 by targeting FACT. Sci Transl Med. 2011;3(95):95ra74.CrossRefPubMed Gasparian AV, Burkhart CA, Purmal AA, Brodsky L, Pal M, Saranadasa M, Bosykh DA, Commane M, Guryanova OA, Pal S, Safina A, Sviridov S, Koman IE, Veith J, Komar AA, Gudkov AV, Gurova KV. Curaxins: anticancer compounds that simultaneously suppress NF-κB and activate p53 by targeting FACT. Sci Transl Med. 2011;3(95):95ra74.CrossRefPubMed
65.
go back to reference Dermawan JK, Gurova K, Pink J, Dowlati A, De S, Narla G, Sharma N, Stark GR. Quinacrine overcomes resistance to erlotinib by inhibiting FACT, NF-κB, and cell-cycle progression in non-small cell lung cancer. Mol Cancer Ther. 2014;13(9):2203–14.CrossRefPubMed Dermawan JK, Gurova K, Pink J, Dowlati A, De S, Narla G, Sharma N, Stark GR. Quinacrine overcomes resistance to erlotinib by inhibiting FACT, NF-κB, and cell-cycle progression in non-small cell lung cancer. Mol Cancer Ther. 2014;13(9):2203–14.CrossRefPubMed
66.
go back to reference Horton JR, Sawada K, Nishibori M, Zhang X, Cheng X. Two polymorphic forms of human histamine methyltransferase: structural, thermal, and kinetic comparisons. Structure. 2001;9(9):837–49.CrossRefPubMedPubMedCentral Horton JR, Sawada K, Nishibori M, Zhang X, Cheng X. Two polymorphic forms of human histamine methyltransferase: structural, thermal, and kinetic comparisons. Structure. 2001;9(9):837–49.CrossRefPubMedPubMedCentral
67.
go back to reference Radke KJ, Selkurt EE, Willis LR. The role of histamine H1 and H2 receptors in the canine kidney. Ren Physiol. 1985;8(2):100–11.PubMed Radke KJ, Selkurt EE, Willis LR. The role of histamine H1 and H2 receptors in the canine kidney. Ren Physiol. 1985;8(2):100–11.PubMed
68.
go back to reference Jutel M, Blaser K, Akdis CA. Histamine in allergic inflammation and immune modulation. Int Arch Allergy Immunol. 2005;137(1):82–92. Epub 2005 Apr 12.CrossRefPubMed Jutel M, Blaser K, Akdis CA. Histamine in allergic inflammation and immune modulation. Int Arch Allergy Immunol. 2005;137(1):82–92. Epub 2005 Apr 12.CrossRefPubMed
69.
go back to reference Hiraga N, Adachi N, Liu K, Nagaro T, Arai T. Suppression of inflammatory cell recruitment by histamine receptor stimulation in ischemic rat brains. Eur J Pharmacol. 2007;557(2–3):236–44. Epub 2006 Nov 14.CrossRefPubMed Hiraga N, Adachi N, Liu K, Nagaro T, Arai T. Suppression of inflammatory cell recruitment by histamine receptor stimulation in ischemic rat brains. Eur J Pharmacol. 2007;557(2–3):236–44. Epub 2006 Nov 14.CrossRefPubMed
70.
go back to reference Akdis CA, Simons FE. Histamine receptors are hot in immunopharmacology. Eur J Pharmacol. 2006;533(1–3):69–76. Epub 2006 Jan 31.CrossRefPubMed Akdis CA, Simons FE. Histamine receptors are hot in immunopharmacology. Eur J Pharmacol. 2006;533(1–3):69–76. Epub 2006 Jan 31.CrossRefPubMed
71.
go back to reference Gurova KV, Hill JE, Guo C, Prokvolit A, Burdelya LG, Samoylova E, Khodyakova AV, Ganapathi R, Ganapathi M, Tararova ND, Bosykh D, Lvovskiy D, Webb TR, Stark GR, Gudkov AV. Small molecules that reactivate p53 in renal cell carcinoma reveal a NF-kappaB-dependent mechanism of p53 suppression in tumors. Proc Natl Acad Sci U S A. 2005;102(48):17448–53.CrossRefPubMedPubMedCentral Gurova KV, Hill JE, Guo C, Prokvolit A, Burdelya LG, Samoylova E, Khodyakova AV, Ganapathi R, Ganapathi M, Tararova ND, Bosykh D, Lvovskiy D, Webb TR, Stark GR, Gudkov AV. Small molecules that reactivate p53 in renal cell carcinoma reveal a NF-kappaB-dependent mechanism of p53 suppression in tumors. Proc Natl Acad Sci U S A. 2005;102(48):17448–53.CrossRefPubMedPubMedCentral
72.
go back to reference Park CH, Tanaka T, Cho EJ, Park JC, Shibahara N, Yokozawa T. Glycerol-induced renal damage improved by 7-O-galloyl-D-sedoheptulose treatment through attenuating oxidative stress. Biol Pharm Bull. 2012;35(1):34–41.CrossRefPubMed Park CH, Tanaka T, Cho EJ, Park JC, Shibahara N, Yokozawa T. Glycerol-induced renal damage improved by 7-O-galloyl-D-sedoheptulose treatment through attenuating oxidative stress. Biol Pharm Bull. 2012;35(1):34–41.CrossRefPubMed
74.
go back to reference Turnbull S, Tabner BJ, Brown DR, Allsop D. Quinacrine acts as an antioxidant and reduces the toxicity of the prion peptide PrP106-126. Neuroreport. 2003;14(13):1743–5.CrossRefPubMed Turnbull S, Tabner BJ, Brown DR, Allsop D. Quinacrine acts as an antioxidant and reduces the toxicity of the prion peptide PrP106-126. Neuroreport. 2003;14(13):1743–5.CrossRefPubMed
75.
go back to reference Nagai J, Tanaka M, Hibasami H, Ikeda T. Inhibition of oxidative hemolysis and lipid peroxidation by mepacrine. J Biochem. 1981;89(4):1143–8.PubMed Nagai J, Tanaka M, Hibasami H, Ikeda T. Inhibition of oxidative hemolysis and lipid peroxidation by mepacrine. J Biochem. 1981;89(4):1143–8.PubMed
76.
go back to reference Fujimoto Y, Tanioka H, Keshi I, Fujita T. The interaction between lipid peroxidation and prostaglandin synthesis in rabbit kidney-medulla slices. Biochem J. 1983;212(1):167–71.CrossRefPubMedPubMedCentral Fujimoto Y, Tanioka H, Keshi I, Fujita T. The interaction between lipid peroxidation and prostaglandin synthesis in rabbit kidney-medulla slices. Biochem J. 1983;212(1):167–71.CrossRefPubMedPubMedCentral
77.
go back to reference Shayevitz JR, McShane AJ, Traystman RJ, Gurtner GH. Mepacrine attenuates pulmonary vasoreactivity in rabbits. J Appl Physiol (1985). 1989;66(4):1921–6. Shayevitz JR, McShane AJ, Traystman RJ, Gurtner GH. Mepacrine attenuates pulmonary vasoreactivity in rabbits. J Appl Physiol (1985). 1989;66(4):1921–6.
78.
go back to reference McAnulty JF, Huang XQ. The effects of administering quinacrine during ultraprofound hypothermia on warm ischemic kidney cortex tissue. J Pharmacol Exp Ther. 1996;277(2):691–9.PubMed McAnulty JF, Huang XQ. The effects of administering quinacrine during ultraprofound hypothermia on warm ischemic kidney cortex tissue. J Pharmacol Exp Ther. 1996;277(2):691–9.PubMed
79.
go back to reference Al-Otaibi KE, Al Elaiwi AM, Tariq M, Al-Asmari AK. Simvastatin attenuates contrast-induced nephropathy through modulation of oxidative stress, proinflammatory myeloperoxidase, and nitric oxide. Oxid Med Cell Longev. 2012;2012:831748. doi:10.1155/2012/831748. Epub 2012 Oct 10.CrossRefPubMedPubMedCentral Al-Otaibi KE, Al Elaiwi AM, Tariq M, Al-Asmari AK. Simvastatin attenuates contrast-induced nephropathy through modulation of oxidative stress, proinflammatory myeloperoxidase, and nitric oxide. Oxid Med Cell Longev. 2012;2012:831748. doi:10.​1155/​2012/​831748. Epub 2012 Oct 10.CrossRefPubMedPubMedCentral
80.
go back to reference Ayvaz S, Aksu B, Kanter M, Uzun H, Erboga M, Colak A, Basaran UN, Pul M. Preventive effects of hyperbaric oxygen treatment on glycerol-induced myoglobinuric acute renal failure in rats. J Mol Histol. 2012;43(2):161–70. doi:10.1007/s10735-012-9391-5. Epub 2012 Feb 7.CrossRefPubMed Ayvaz S, Aksu B, Kanter M, Uzun H, Erboga M, Colak A, Basaran UN, Pul M. Preventive effects of hyperbaric oxygen treatment on glycerol-induced myoglobinuric acute renal failure in rats. J Mol Histol. 2012;43(2):161–70. doi:10.​1007/​s10735-012-9391-5. Epub 2012 Feb 7.CrossRefPubMed
81.
go back to reference Humes HD. Role of calcium in pathogenesis of acute renal failure. Am J Physiol. 1986;250(4 Pt 2):F579–89.PubMed Humes HD. Role of calcium in pathogenesis of acute renal failure. Am J Physiol. 1986;250(4 Pt 2):F579–89.PubMed
82.
go back to reference Razzak AA, Mousah HA, Althamir SN. Nifedipine, calcium channel blocker against glycerol-induced acute renal failure in rats. Kufa Med J. 2004;7(1):1–4. Razzak AA, Mousah HA, Althamir SN. Nifedipine, calcium channel blocker against glycerol-induced acute renal failure in rats. Kufa Med J. 2004;7(1):1–4.
84.
go back to reference Salahudeen AK, Wang C, Bigler SA, Dai Z, Tachikawa H. Synergistic renal protection by combining alkaline-diuresis with lipid peroxidation inhibitors in rhabdomyolysis: possible interaction between oxidant and non-oxidant mechanisms. Nephrol Dial Transplant. 1996;11:635–42.CrossRefPubMed Salahudeen AK, Wang C, Bigler SA, Dai Z, Tachikawa H. Synergistic renal protection by combining alkaline-diuresis with lipid peroxidation inhibitors in rhabdomyolysis: possible interaction between oxidant and non-oxidant mechanisms. Nephrol Dial Transplant. 1996;11:635–42.CrossRefPubMed
85.
go back to reference Najafzadeh H, Razijalali M, Morovvati H, Navvabi L. Evaluation the effect of cimetidine, estradiol and vitamin E on myoglobinuric renal toxicity in rats. Am Eurasian J Toxicol Sci. 2011;3(3):177–83. Najafzadeh H, Razijalali M, Morovvati H, Navvabi L. Evaluation the effect of cimetidine, estradiol and vitamin E on myoglobinuric renal toxicity in rats. Am Eurasian J Toxicol Sci. 2011;3(3):177–83.
86.
go back to reference Kaya O, Aydogdu N, Tastekin E, Karadag CH, Unduz OG, Sut N. Effects of losartan on glycerol-induced myoglobinuric acute renal failure in rats. Kafkas Univ Vet Fak Derg. 2013;19(2):253–8. doi:10.9775/kvfd.2012.7620. Kaya O, Aydogdu N, Tastekin E, Karadag CH, Unduz OG, Sut N. Effects of losartan on glycerol-induced myoglobinuric acute renal failure in rats. Kafkas Univ Vet Fak Derg. 2013;19(2):253–8. doi:10.​9775/​kvfd.​2012.​7620.
87.
go back to reference Papanicolaou N, Callard P, Bariety J, Milliez P. The effect of indomethacin and prostaglandin (PGE2) on renal failure due to glycerol in saline-loaded rats. Clin Sci Mol Med. 1975;49(5):507–10.PubMed Papanicolaou N, Callard P, Bariety J, Milliez P. The effect of indomethacin and prostaglandin (PGE2) on renal failure due to glycerol in saline-loaded rats. Clin Sci Mol Med. 1975;49(5):507–10.PubMed
88.
go back to reference Abdulkader RC, Yuki MM, Paiva AC, Marcondes M. Prolonged inhibition of angiotensin II attenuates glycerol-induced acute renal failure. Braz J Med Biol Res. 1988;21(2):233–9.PubMed Abdulkader RC, Yuki MM, Paiva AC, Marcondes M. Prolonged inhibition of angiotensin II attenuates glycerol-induced acute renal failure. Braz J Med Biol Res. 1988;21(2):233–9.PubMed
89.
go back to reference Nakamura H, Nemenoff RA, Gronich JH, Bonventre JV. Subcellular characteristics of phospholipase A2 activity in the rat kidney. Enhanced cytosolic, mitochondrial, and microsomal phospholipase A2 enzymatic activity after renal ischemia and reperfusion. J Clin Invest. 1991;87(5):1810–8.CrossRefPubMedPubMedCentral Nakamura H, Nemenoff RA, Gronich JH, Bonventre JV. Subcellular characteristics of phospholipase A2 activity in the rat kidney. Enhanced cytosolic, mitochondrial, and microsomal phospholipase A2 enzymatic activity after renal ischemia and reperfusion. J Clin Invest. 1991;87(5):1810–8.CrossRefPubMedPubMedCentral
90.
go back to reference Worrell RT, Bao HF, Denson DD, Eaton DC. Contrasting effects of cPLA2 on epithelial Na + transport. Am J Physiol Cell Physiol. 2001;281(1):C147–56.PubMed Worrell RT, Bao HF, Denson DD, Eaton DC. Contrasting effects of cPLA2 on epithelial Na + transport. Am J Physiol Cell Physiol. 2001;281(1):C147–56.PubMed
91.
go back to reference Filippov A, Skatova G, Porotikov V, Kobrinsky E, Saxon M. Ca2 + −antagonistic properties of phospholipase A2 inhibitors, mepacrine and chloroquine. Gen Physiol Biophys. 1989;8(2):113–8.PubMed Filippov A, Skatova G, Porotikov V, Kobrinsky E, Saxon M. Ca2 + −antagonistic properties of phospholipase A2 inhibitors, mepacrine and chloroquine. Gen Physiol Biophys. 1989;8(2):113–8.PubMed
92.
go back to reference de la Peña P, Reeves JP. Inhibition and activation of Na + −Ca2+ exchange activity by quinacrine. Am J Physiol. 1987;252(1 Pt 1):C24–9.PubMed de la Peña P, Reeves JP. Inhibition and activation of Na + −Ca2+ exchange activity by quinacrine. Am J Physiol. 1987;252(1 Pt 1):C24–9.PubMed
Metadata
Title
Protective effect of quinacrine against glycerol-induced acute kidney injury in rats
Authors
Abdulrahman K. Al Asmari
Khalid Tariq Al Sadoon
Ali Ahmed Obaid
Deivakadatcham Yesunayagam
Mohammad Tariq
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2017
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-017-0450-8

Other articles of this Issue 1/2017

BMC Nephrology 1/2017 Go to the issue