Skip to main content
Top
Published in: BMC Nephrology 1/2016

Open Access 01-12-2016 | Research article

Dietary polyunsaturated fatty acids and incidence of end-stage renal disease in the Southern Community Cohort Study

Authors: Rakesh Malhotra, Kerri L. Cavanaugh, William J. Blot, T. Alp Ikizler, Loren Lipworth, Edmond K. Kabagambe

Published in: BMC Nephrology | Issue 1/2016

Login to get access

Abstract

Background

Whether polyunsaturated fatty acids (PUFA) are associated with end-stage renal disease (ESRD) in populations with a high burden of risk factors for kidney disease is unknown. We sought to determine whether PUFA intake is associated with ESRD.

Methods

We conducted a nested case–control study of ESRD within the Southern Community Cohort Study (SCCS), a prospective cohort of low-income blacks and whites in the southeastern US (2002–2009). Through 2012, 1,074 incident ESRD cases were identified by linkage with the United States Renal Data System and matched to 3,230 controls by age, sex and race. Dietary intake of total, n-3 or n-6 PUFA was assessed from a validated food frequency questionnaire administered at baseline. Odds ratios (ORs) and 95 % confidence intervals (CIs) were computed from logistic regression models that included matching variables, body mass index, smoking, diabetes, hypertension, education, income, total energy intake and percent energy from protein and saturated fat.

Results

The mean (SD) age of participants was 55 (9) years. Most participants were women (55 %), black (87 %), with hypertension (67 %) and on average obtained 8 % of their energy from PUFA. Higher PUFA intake was marginally associated with a lower risk of ESRD in adjusted analyses. The adjusted odds ratios (95 % confidence intervals) for ESRD for the 5th vs. 1st quintile of PUFA were 0.79 (0.60–1.05; Ptrend = 0.06) for total PUFA, 0.81 (0.61–1.06; Ptrend = 0.04) for n-6 PUFA and 0.93 (0.71–1.21; Ptrend = 0.45) for n-3 PUFA.

Conclusions

We observed a marginally significant inverse trend between dietary PUFA intake and ESRD incidence, mainly driven by n-6 fatty acid intake. Our findings require replication but suggest that a diet rich in n-6 PUFA may prevent ESRD development in a population with a high burden of kidney disease risk factors.
Literature
1.
go back to reference Hallan SI, Coresh J, Astor BC, et al. International comparison of the relationship of chronic kidney disease prevalence and ESRD risk. Clin J Am Soc Nephrol. 2006;17(8):2275–84.CrossRef Hallan SI, Coresh J, Astor BC, et al. International comparison of the relationship of chronic kidney disease prevalence and ESRD risk. Clin J Am Soc Nephrol. 2006;17(8):2275–84.CrossRef
2.
go back to reference Levey AS, Atkins R, Coresh J, et al. Chronic kidney disease as a global public health problem: approaches and initiatives - a position statement from Kidney Disease Improving Global Outcomes. Kidney Int. 2007;72(3):247–59.CrossRefPubMed Levey AS, Atkins R, Coresh J, et al. Chronic kidney disease as a global public health problem: approaches and initiatives - a position statement from Kidney Disease Improving Global Outcomes. Kidney Int. 2007;72(3):247–59.CrossRefPubMed
3.
go back to reference van der Velde M, Matsushita K, Coresh J, et al. Lower estimated glomerular filtration rate and higher albuminuria are associated with all-cause and cardiovascular mortality. A collaborative meta-analysis of high-risk population cohorts. Kidney Int. 2011;79(12):1341–52.CrossRefPubMed van der Velde M, Matsushita K, Coresh J, et al. Lower estimated glomerular filtration rate and higher albuminuria are associated with all-cause and cardiovascular mortality. A collaborative meta-analysis of high-risk population cohorts. Kidney Int. 2011;79(12):1341–52.CrossRefPubMed
4.
go back to reference Jha V, Garcia-Garcia G, Iseki K, et al. Chronic kidney disease: global dimension and perspectives. Lancet. 2013;382(9888):260–72.CrossRefPubMed Jha V, Garcia-Garcia G, Iseki K, et al. Chronic kidney disease: global dimension and perspectives. Lancet. 2013;382(9888):260–72.CrossRefPubMed
5.
go back to reference Kdoqi. KDOQI clinical practice guidelines and clinical practice recommendations for diabetes and chronic kidney disease. Am J Kidney Dis. 2007;49(2 Suppl 2):S12–154. Kdoqi. KDOQI clinical practice guidelines and clinical practice recommendations for diabetes and chronic kidney disease. Am J Kidney Dis. 2007;49(2 Suppl 2):S12–154.
6.
go back to reference Kazancioglu R. Risk factors for chronic kidney disease: an update. Kidney Int Suppl. 2013;3(4):368–71.CrossRef Kazancioglu R. Risk factors for chronic kidney disease: an update. Kidney Int Suppl. 2013;3(4):368–71.CrossRef
7.
go back to reference Tsioufis C, Tatsis I, Thomopoulos C, et al. Effects of hypertension, diabetes mellitus, obesity and other factors on kidney haemodynamics. Curr Vasc Pharmacol. 2014;12(3):537–48.CrossRefPubMed Tsioufis C, Tatsis I, Thomopoulos C, et al. Effects of hypertension, diabetes mellitus, obesity and other factors on kidney haemodynamics. Curr Vasc Pharmacol. 2014;12(3):537–48.CrossRefPubMed
8.
go back to reference Horowitz B, Miskulin D, Zager P. Epidemiology of hypertension in CKD. Adv Chronic Kidney Dis. 2015;22(2):88–95.CrossRefPubMed Horowitz B, Miskulin D, Zager P. Epidemiology of hypertension in CKD. Adv Chronic Kidney Dis. 2015;22(2):88–95.CrossRefPubMed
9.
go back to reference Yang B, Ding F, Yan J, et al. Exploratory serum fatty acid patterns associated with blood pressure in community-dwelling middle-aged and elderly Chinese. Lipids Health Dis. 2016;15(1):58.CrossRefPubMedPubMedCentral Yang B, Ding F, Yan J, et al. Exploratory serum fatty acid patterns associated with blood pressure in community-dwelling middle-aged and elderly Chinese. Lipids Health Dis. 2016;15(1):58.CrossRefPubMedPubMedCentral
10.
go back to reference Guess N, Perreault L, Kerege A, Strauss A, Bergman BC. Dietary fatty acids differentially associate with fasting versus 2-hour glucose homeostasis: implications for the management of subtypes of prediabetes. PLoS One. 2016;11(3):e0150148.CrossRefPubMedPubMedCentral Guess N, Perreault L, Kerege A, Strauss A, Bergman BC. Dietary fatty acids differentially associate with fasting versus 2-hour glucose homeostasis: implications for the management of subtypes of prediabetes. PLoS One. 2016;11(3):e0150148.CrossRefPubMedPubMedCentral
11.
go back to reference Higashiyama A, Kubota Y, Marumo M, et al. Association between serum long-chain n-3 and n-6 polyunsaturated fatty acid profiles and glomerular filtration rate assessed by serum creatinine and cystatin C levels in Japanese community-dwellers. J Epidemiol. 2015;25(4):303–11.CrossRefPubMedPubMedCentral Higashiyama A, Kubota Y, Marumo M, et al. Association between serum long-chain n-3 and n-6 polyunsaturated fatty acid profiles and glomerular filtration rate assessed by serum creatinine and cystatin C levels in Japanese community-dwellers. J Epidemiol. 2015;25(4):303–11.CrossRefPubMedPubMedCentral
12.
go back to reference Hsu CC, Jhang HR, Chang WT, et al. Associations between dietary patterns and kidney function indicators in type 2 diabetes. Clin Nutr. 2014;33(1):98–105.CrossRefPubMed Hsu CC, Jhang HR, Chang WT, et al. Associations between dietary patterns and kidney function indicators in type 2 diabetes. Clin Nutr. 2014;33(1):98–105.CrossRefPubMed
13.
go back to reference Gopinath B, Harris DC, Flood VM, Burlutsky G, Mitchell P. Consumption of long-chain n-3 PUFA, alpha-linolenic acid and fish is associated with the prevalence of chronic kidney disease. Br J Nutr. 2011;105(9):1361–8.CrossRefPubMed Gopinath B, Harris DC, Flood VM, Burlutsky G, Mitchell P. Consumption of long-chain n-3 PUFA, alpha-linolenic acid and fish is associated with the prevalence of chronic kidney disease. Br J Nutr. 2011;105(9):1361–8.CrossRefPubMed
14.
15.
go back to reference Huang X, Stenvinkel P, Qureshi AR, et al. Essential polyunsaturated fatty acids, inflammation and mortality in dialysis patients. Nephrol Dial Transplant. 2012;27(9):3615–20.CrossRefPubMed Huang X, Stenvinkel P, Qureshi AR, et al. Essential polyunsaturated fatty acids, inflammation and mortality in dialysis patients. Nephrol Dial Transplant. 2012;27(9):3615–20.CrossRefPubMed
16.
go back to reference Miller 3rd ER, Juraschek SP, Appel LJ, et al. The effect of n-3 long-chain polyunsaturated fatty acid supplementation on urine protein excretion and kidney function: meta-analysis of clinical trials. Am J Clin Nutr. 2009;89(6):1937–45.CrossRefPubMedPubMedCentral Miller 3rd ER, Juraschek SP, Appel LJ, et al. The effect of n-3 long-chain polyunsaturated fatty acid supplementation on urine protein excretion and kidney function: meta-analysis of clinical trials. Am J Clin Nutr. 2009;89(6):1937–45.CrossRefPubMedPubMedCentral
17.
go back to reference Huang X, Lindholm B, Stenvinkel P, Carrero JJ. Dietary fat modification in patients with chronic kidney disease: n-3 fatty acids and beyond. J Nephrol. 2013;26(6):960–74.CrossRefPubMed Huang X, Lindholm B, Stenvinkel P, Carrero JJ. Dietary fat modification in patients with chronic kidney disease: n-3 fatty acids and beyond. J Nephrol. 2013;26(6):960–74.CrossRefPubMed
18.
go back to reference Grande JP, Walker HJ, Holub BJ, et al. Suppressive effects of fish oil on mesangial cell proliferation in vitro and in vivo. Kidney Int. 2000;57(3):1027–40.CrossRefPubMed Grande JP, Walker HJ, Holub BJ, et al. Suppressive effects of fish oil on mesangial cell proliferation in vitro and in vivo. Kidney Int. 2000;57(3):1027–40.CrossRefPubMed
19.
go back to reference Chaudhary A, Mishra A, Sethi S. Oxidized omega-3 fatty acids inhibit pro-inflammatory responses in glomerular endothelial cells. Nephron Exp Nephrol. 2004;97(4):e136–145.CrossRefPubMed Chaudhary A, Mishra A, Sethi S. Oxidized omega-3 fatty acids inhibit pro-inflammatory responses in glomerular endothelial cells. Nephron Exp Nephrol. 2004;97(4):e136–145.CrossRefPubMed
20.
go back to reference Perreault M, Roke K, Badawi A, et al. Plasma levels of 14:0, 16:0, 16:1n-7, and 20:3n-6 are positively associated, but 18:0 and 18:2n-6 are inversely associated with markers of inflammation in young healthy adults. Lipids. 2014;49(3):255–63.CrossRefPubMed Perreault M, Roke K, Badawi A, et al. Plasma levels of 14:0, 16:0, 16:1n-7, and 20:3n-6 are positively associated, but 18:0 and 18:2n-6 are inversely associated with markers of inflammation in young healthy adults. Lipids. 2014;49(3):255–63.CrossRefPubMed
21.
go back to reference Kaikkonen JE, Kresanov P, Ahotupa M, et al. High serum n6 fatty acid proportion is associated with lowered LDL oxidation and inflammation: the Cardiovascular Risk in Young Finns Study. Free Radic Res. 2014;48(4):420–6.CrossRefPubMed Kaikkonen JE, Kresanov P, Ahotupa M, et al. High serum n6 fatty acid proportion is associated with lowered LDL oxidation and inflammation: the Cardiovascular Risk in Young Finns Study. Free Radic Res. 2014;48(4):420–6.CrossRefPubMed
22.
go back to reference Sundaram S, Bukowski MR, Lie WR, Picklo MJ, Yan L. High-Fat diets containing different amounts of n3 and n6 polyunsaturated fatty acids modulate inflammatory cytokine production in mice. Lipids. 2016;51(5):571–82.CrossRefPubMed Sundaram S, Bukowski MR, Lie WR, Picklo MJ, Yan L. High-Fat diets containing different amounts of n3 and n6 polyunsaturated fatty acids modulate inflammatory cytokine production in mice. Lipids. 2016;51(5):571–82.CrossRefPubMed
23.
go back to reference Wiese DM, Horst SN, Brown CT, et al. Serum fatty acids Are correlated with inflammatory cytokines in ulcerative colitis. PLoS One. 2016;11(5):e0156387.CrossRefPubMedPubMedCentral Wiese DM, Horst SN, Brown CT, et al. Serum fatty acids Are correlated with inflammatory cytokines in ulcerative colitis. PLoS One. 2016;11(5):e0156387.CrossRefPubMedPubMedCentral
24.
go back to reference Nyirenda CK, Kabagambe EK, Koethe JR, et al. Plasma fatty acids in Zambian adults with HIV/AIDS: relation to dietary intake and cardiovascular risk factors. J Nutr Metab. 2015;2015:635817.CrossRefPubMedPubMedCentral Nyirenda CK, Kabagambe EK, Koethe JR, et al. Plasma fatty acids in Zambian adults with HIV/AIDS: relation to dietary intake and cardiovascular risk factors. J Nutr Metab. 2015;2015:635817.CrossRefPubMedPubMedCentral
25.
go back to reference Zhao G, Etherton TD, Martin KR, West SG, Gillies PJ, Kris-Etherton PM. Dietary alpha-linolenic acid reduces inflammatory and lipid cardiovascular risk factors in hypercholesterolemic men and women. J Nutr. 2004;134(11):2991–7.PubMed Zhao G, Etherton TD, Martin KR, West SG, Gillies PJ, Kris-Etherton PM. Dietary alpha-linolenic acid reduces inflammatory and lipid cardiovascular risk factors in hypercholesterolemic men and women. J Nutr. 2004;134(11):2991–7.PubMed
26.
go back to reference Egert S, Stehle P. Impact of n-3 fatty acids on endothelial function: results from human interventions studies. Curr Opin Clin Nutr Metab Care. 2011;14(2):121–31.CrossRefPubMed Egert S, Stehle P. Impact of n-3 fatty acids on endothelial function: results from human interventions studies. Curr Opin Clin Nutr Metab Care. 2011;14(2):121–31.CrossRefPubMed
27.
go back to reference Wang DD, Li Y, Chiuve SE, et al. Association of specific dietary fats with total and cause-specific mortality. JAMA Intern Med. 2016;176(8):1134–45.CrossRefPubMed Wang DD, Li Y, Chiuve SE, et al. Association of specific dietary fats with total and cause-specific mortality. JAMA Intern Med. 2016;176(8):1134–45.CrossRefPubMed
28.
go back to reference Kabagambe EK, Tsai MY, Hopkins PN, et al. Erythrocyte fatty acid composition and the metabolic syndrome: a National Heart, Lung, and Blood Institute GOLDN study. Clin Chem. 2008;54(1):154–62.CrossRefPubMed Kabagambe EK, Tsai MY, Hopkins PN, et al. Erythrocyte fatty acid composition and the metabolic syndrome: a National Heart, Lung, and Blood Institute GOLDN study. Clin Chem. 2008;54(1):154–62.CrossRefPubMed
29.
go back to reference Muka T, Kiefte-de Jong JC, Hofman A, Dehghan A, Rivadeneira F, Franco OH. Polyunsaturated fatty acids and serum C-reactive protein: the Rotterdam study. Am J Epidemiol. 2015;181(11):846–56.CrossRefPubMed Muka T, Kiefte-de Jong JC, Hofman A, Dehghan A, Rivadeneira F, Franco OH. Polyunsaturated fatty acids and serum C-reactive protein: the Rotterdam study. Am J Epidemiol. 2015;181(11):846–56.CrossRefPubMed
30.
go back to reference USDA and UDHHS. Report of the Dietary Guidelines Advisory Committee on the dietary guidelines for Americans. 2015. USDA and UDHHS. Report of the Dietary Guidelines Advisory Committee on the dietary guidelines for Americans. 2015.
31.
go back to reference Jain AP, Aggarwal KK, Zhang PY. Omega-3 fatty acids and cardiovascular disease. Eur Rev Med Pharmacol Sci. 2015;19(3):441–5.PubMed Jain AP, Aggarwal KK, Zhang PY. Omega-3 fatty acids and cardiovascular disease. Eur Rev Med Pharmacol Sci. 2015;19(3):441–5.PubMed
32.
go back to reference Morin C, Rousseau E, Blier PU, Fortin S. Effect of docosahexaenoic acid monoacylglyceride on systemic hypertension and cardiovascular dysfunction. Am J Physiol Heart Circ Physiol. 2015;309(1):H93–H102.CrossRefPubMed Morin C, Rousseau E, Blier PU, Fortin S. Effect of docosahexaenoic acid monoacylglyceride on systemic hypertension and cardiovascular dysfunction. Am J Physiol Heart Circ Physiol. 2015;309(1):H93–H102.CrossRefPubMed
33.
go back to reference NKF-DOQI clinical practice guidelines for nutrition in chronic renal failure. American Journal of Kidney Diseases 2000;35(S2):S17-S104. NKF-DOQI clinical practice guidelines for nutrition in chronic renal failure. American Journal of Kidney Diseases 2000;35(S2):S17-S104.
34.
go back to reference Lipworth L, Mumma MT, Cavanaugh KL, et al. Incidence and predictors of end stage renal disease among low-income blacks and whites. PLoS One. 2012;7(10):e48407.CrossRefPubMedPubMedCentral Lipworth L, Mumma MT, Cavanaugh KL, et al. Incidence and predictors of end stage renal disease among low-income blacks and whites. PLoS One. 2012;7(10):e48407.CrossRefPubMedPubMedCentral
35.
go back to reference Signorello LB, Hargreaves MK, Blot WJ. The Southern Community Cohort Study: investigating health disparities. J Health Care Poor Underserved. 2010;21(1 Suppl):26–37.CrossRefPubMedPubMedCentral Signorello LB, Hargreaves MK, Blot WJ. The Southern Community Cohort Study: investigating health disparities. J Health Care Poor Underserved. 2010;21(1 Suppl):26–37.CrossRefPubMedPubMedCentral
36.
go back to reference Lipworth L, Fazio S, Kabagambe EK, et al. A prospective study of statin use and mortality among 67,385 blacks and whites in the Southeastern United States. Clin Epidemiol. 2014;6:15–25.PubMed Lipworth L, Fazio S, Kabagambe EK, et al. A prospective study of statin use and mortality among 67,385 blacks and whites in the Southeastern United States. Clin Epidemiol. 2014;6:15–25.PubMed
37.
go back to reference Kiage JN, Sampson UK, Lipworth L, et al. Intake of polyunsaturated fat in relation to mortality among statin users and non-users in the Southern Community Cohort Study. Nutr Metab Cardiovasc Dis. 2015;25(11):1016–24.CrossRefPubMedPubMedCentral Kiage JN, Sampson UK, Lipworth L, et al. Intake of polyunsaturated fat in relation to mortality among statin users and non-users in the Southern Community Cohort Study. Nutr Metab Cardiovasc Dis. 2015;25(11):1016–24.CrossRefPubMedPubMedCentral
38.
go back to reference von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol. 2008;61(4):344–9.CrossRef von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol. 2008;61(4):344–9.CrossRef
39.
go back to reference U S Renal Data System, USRDS Annual Data Report: Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD. 2012. U S Renal Data System, USRDS Annual Data Report: Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD. 2012.
40.
go back to reference Signorello LB, Munro HM, Buchowski MS, et al. Estimating nutrient intake from a food frequency questionnaire: incorporating the elements of race and geographic region. Am J Epidemiol. 2009;170(1):104–11.CrossRefPubMedPubMedCentral Signorello LB, Munro HM, Buchowski MS, et al. Estimating nutrient intake from a food frequency questionnaire: incorporating the elements of race and geographic region. Am J Epidemiol. 2009;170(1):104–11.CrossRefPubMedPubMedCentral
41.
go back to reference Hoogeveen EK, Geleijnse JM, Kromhout D, et al. Effect of omega-3 fatty acids on kidney function after myocardial infarction: the Alpha Omega Trial. Clin J Am Soc Nephrol. 2014;9(10):1676–83.CrossRefPubMedPubMedCentral Hoogeveen EK, Geleijnse JM, Kromhout D, et al. Effect of omega-3 fatty acids on kidney function after myocardial infarction: the Alpha Omega Trial. Clin J Am Soc Nephrol. 2014;9(10):1676–83.CrossRefPubMedPubMedCentral
42.
go back to reference Eide IA, Jenssen T, Hartmann A, et al. Plasma levels of marine n-3 polyunsaturated fatty acids and renal allograft survival. Nephrol Dial Transplant. 2016;31(1):160–7.CrossRefPubMed Eide IA, Jenssen T, Hartmann A, et al. Plasma levels of marine n-3 polyunsaturated fatty acids and renal allograft survival. Nephrol Dial Transplant. 2016;31(1):160–7.CrossRefPubMed
43.
go back to reference Sabbatini M, Apicella L, Cataldi M, et al. Effects of a diet rich in N-3 polyunsaturated fatty acids on systemic inflammation in renal transplant recipients. J Am Coll Nutr. 2013;32(6):375–83.CrossRefPubMed Sabbatini M, Apicella L, Cataldi M, et al. Effects of a diet rich in N-3 polyunsaturated fatty acids on systemic inflammation in renal transplant recipients. J Am Coll Nutr. 2013;32(6):375–83.CrossRefPubMed
44.
go back to reference Miller 3rd ER, Juraschek SP, Anderson CA, et al. The effects of n-3 long-chain polyunsaturated fatty acid supplementation on biomarkers of kidney injury in adults with diabetes: results of the GO-FISH trial. Diabetes Care. 2013;36(6):1462–9.CrossRefPubMedPubMedCentral Miller 3rd ER, Juraschek SP, Anderson CA, et al. The effects of n-3 long-chain polyunsaturated fatty acid supplementation on biomarkers of kidney injury in adults with diabetes: results of the GO-FISH trial. Diabetes Care. 2013;36(6):1462–9.CrossRefPubMedPubMedCentral
45.
go back to reference Das UN. Long-chain polyunsaturated fatty acids interact with nitric oxide, superoxide anion, and transforming growth factor-beta to prevent human essential hypertension. Eur J Clin Nutr. 2004;58(2):195–203.CrossRefPubMed Das UN. Long-chain polyunsaturated fatty acids interact with nitric oxide, superoxide anion, and transforming growth factor-beta to prevent human essential hypertension. Eur J Clin Nutr. 2004;58(2):195–203.CrossRefPubMed
46.
go back to reference Food and Nutrition Board IoMMaHD. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (Macronutrients). Washington: The National Academies Press; 2002. p. 609–96. Food and Nutrition Board IoMMaHD. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (Macronutrients). Washington: The National Academies Press; 2002. p. 609–96.
47.
go back to reference Kiage JN, Merrill PD, Robinson CJ, et al. Intake of trans fat and all-cause mortality in the Reasons for Geographical and Racial Differences in Stroke (REGARDS) cohort. Am J Clin Nutr. 2013;97(5):1121–8.CrossRefPubMedPubMedCentral Kiage JN, Merrill PD, Robinson CJ, et al. Intake of trans fat and all-cause mortality in the Reasons for Geographical and Racial Differences in Stroke (REGARDS) cohort. Am J Clin Nutr. 2013;97(5):1121–8.CrossRefPubMedPubMedCentral
Metadata
Title
Dietary polyunsaturated fatty acids and incidence of end-stage renal disease in the Southern Community Cohort Study
Authors
Rakesh Malhotra
Kerri L. Cavanaugh
William J. Blot
T. Alp Ikizler
Loren Lipworth
Edmond K. Kabagambe
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2016
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-016-0371-y

Other articles of this Issue 1/2016

BMC Nephrology 1/2016 Go to the issue