Skip to main content
Top
Published in: BMC Nephrology 1/2016

Open Access 01-12-2016 | Research article

Modulation of renal oxygenation and perfusion in rat kidney monitored by quantitative diffusion and blood oxygen level dependent magnetic resonance imaging on a clinical 1.5T platform

Authors: Neil P. Jerome, Jessica K. R. Boult, Matthew R. Orton, James d’Arcy, David J. Collins, Martin O. Leach, Dow-Mu Koh, Simon P. Robinson

Published in: BMC Nephrology | Issue 1/2016

Login to get access

Abstract

Background

To investigate the combined use of intravoxel incoherent motion (IVIM) diffusion-weighted (DW) and blood oxygen level dependent (BOLD) magnetic resonance imaging (MRI) to assess rat renal function using a 1.5T clinical platform.

Methods

Multiple b-value DW and BOLD MR images were acquired from adult rats using a parallel clinical coil arrangement, enabling quantitation of the apparent diffusion coefficient (ADC), IVIM-derived diffusion coefficient (D), pseudodiffusion coefficient (D*) and perfusion fraction (f), and the transverse relaxation time T2*, for whole kidney, renal cortex, and medulla. Following the acquisition of two baseline datasets to assess measurement repeatability, images were acquired following i.v. administration of hydralazine, furosemide, or angiotensin II for up to 40 min.

Results

Excellent repeatability (CoV <10 %) was observed for ADC, D, f and T2* measured over the whole kidney. Hydralazine induced a marked and significant (p < 0.05) reduction in whole kidney ADC, D, and T2*, and a significant (p < 0.05) increase in D* and f. Furosemide significantly (p < 0.05) increased whole kidney ADC, D, and T2*. A more variable response to angiotensin II was determined, with a significant (p < 0.05) increase in medulla D* and significant (p < 0.05) reduction in whole kidney T2* established.

Conclusions

Multiparametric MRI, incorporating quantitation of IVIM DWI and BOLD biomarkers and performed on a clinical platform, can be used to monitor the acute effects of vascular and tubular modulating drugs on rat kidney function in vivo. Clinical adoption of such functional imaging biomarkers can potentially inform on treatment effects in patients with renal dysfunction.
Appendix
Available only for authorised users
Literature
2.
go back to reference Cowley AW, Mattson DL, Lu S, Roman RJ. The Renal Medulla and Hypertension. Hypertension. 1995;25:663–73.CrossRefPubMed Cowley AW, Mattson DL, Lu S, Roman RJ. The Renal Medulla and Hypertension. Hypertension. 1995;25:663–73.CrossRefPubMed
3.
go back to reference Priatna A, Epstein FH, Spokes K, Prasad PV. Evaluation of Changes in Intrarenal Oxygenation in Rats Using Multiple Gradient-Recalled Echo (mGRE) Sequence. J Magn Reson Imaging. 1999;846:842–6.CrossRef Priatna A, Epstein FH, Spokes K, Prasad PV. Evaluation of Changes in Intrarenal Oxygenation in Rats Using Multiple Gradient-Recalled Echo (mGRE) Sequence. J Magn Reson Imaging. 1999;846:842–6.CrossRef
4.
go back to reference Prasad PV. Functional MRI of the kidney: tools for translational studies of pathophysiology of renal disease. Am J Physiol Renal Physiol. 2006;290:F958–74.CrossRefPubMedPubMedCentral Prasad PV. Functional MRI of the kidney: tools for translational studies of pathophysiology of renal disease. Am J Physiol Renal Physiol. 2006;290:F958–74.CrossRefPubMedPubMedCentral
5.
go back to reference Ebrahimi B, Textor SC, Lerman LO. Renal Relevant Radiology: Renal Functional Magnetic Resonance Imaging. Cjasn. 2013;9:1–11. Ebrahimi B, Textor SC, Lerman LO. Renal Relevant Radiology: Renal Functional Magnetic Resonance Imaging. Cjasn. 2013;9:1–11.
6.
go back to reference Tsuda K, Murakami T, Sakurai K, Harada K, Kim T, Takahashi S, Tomoda K, Narumi Y, Nakamura H, Izumi M, Tsukamoto T. Preliminary evaluation of the apparent diffusion coefficient of the kidney with a spiral IVIM sequence. Nihon Igaku Hoshasen Gakkai Zasshi. 1997;57:19–22.PubMed Tsuda K, Murakami T, Sakurai K, Harada K, Kim T, Takahashi S, Tomoda K, Narumi Y, Nakamura H, Izumi M, Tsukamoto T. Preliminary evaluation of the apparent diffusion coefficient of the kidney with a spiral IVIM sequence. Nihon Igaku Hoshasen Gakkai Zasshi. 1997;57:19–22.PubMed
7.
go back to reference Yildirim E, Kirbas I, Teksam M, Karadeli E, Gullu H, Ozer I. Diffusion-weighted MR imaging of kidneys in renal artery stenosis. Eur J Radiol. 2008;65:148–53.CrossRefPubMed Yildirim E, Kirbas I, Teksam M, Karadeli E, Gullu H, Ozer I. Diffusion-weighted MR imaging of kidneys in renal artery stenosis. Eur J Radiol. 2008;65:148–53.CrossRefPubMed
8.
go back to reference Eisenberger U, Thoeny HC, Binser T, Gugger M, Frey FJ, Boesch C, Vermathen P. Evaluation of renal allograft function early after transplantation with diffusion-weighted MR imaging. Eur Radiol. 2010;20:1374–83.CrossRefPubMed Eisenberger U, Thoeny HC, Binser T, Gugger M, Frey FJ, Boesch C, Vermathen P. Evaluation of renal allograft function early after transplantation with diffusion-weighted MR imaging. Eur Radiol. 2010;20:1374–83.CrossRefPubMed
9.
go back to reference Le Bihan D, Breton E, Lallemand D, Aubin M-L, Vignaud J, Laval-Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology. 1988;168:497–505.CrossRefPubMed Le Bihan D, Breton E, Lallemand D, Aubin M-L, Vignaud J, Laval-Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology. 1988;168:497–505.CrossRefPubMed
10.
go back to reference Koh D-M, Collins DJ, Orton MR. Intravoxel incoherent motion in body diffusion-weighted MRI: reality and challenges. Am J Roentgenol. 2011;196:1351–61.CrossRef Koh D-M, Collins DJ, Orton MR. Intravoxel incoherent motion in body diffusion-weighted MRI: reality and challenges. Am J Roentgenol. 2011;196:1351–61.CrossRef
11.
go back to reference Hollingsworth KG, Lomas DJ. Influence of perfusion on hepatic MR diffusion measurement. NMR Biomed. 2006;19:231–5.CrossRefPubMed Hollingsworth KG, Lomas DJ. Influence of perfusion on hepatic MR diffusion measurement. NMR Biomed. 2006;19:231–5.CrossRefPubMed
12.
go back to reference Sigmund EE, Vivier P-H, Sui D, Lamparello NA, Tantillo K, Rusinek H, Babb JS, Storey P, Lee VS, Chandarana H. Intravoxel Incoherent Motion and Diffusion-Tensor imaging in renal Tissue under hydration and Furosemide Flow Challenges. Radiology. 2012;263:758.CrossRefPubMed Sigmund EE, Vivier P-H, Sui D, Lamparello NA, Tantillo K, Rusinek H, Babb JS, Storey P, Lee VS, Chandarana H. Intravoxel Incoherent Motion and Diffusion-Tensor imaging in renal Tissue under hydration and Furosemide Flow Challenges. Radiology. 2012;263:758.CrossRefPubMed
13.
go back to reference Mcphail LD, Robinson SP. Intrinsic Susceptibility MR Imaging of Chemically Induced Rat Mammary Tumors : Relationship to Histologic Assessment Purpose : Methods : Results . Radiology. 2010;254:110.CrossRefPubMed Mcphail LD, Robinson SP. Intrinsic Susceptibility MR Imaging of Chemically Induced Rat Mammary Tumors : Relationship to Histologic Assessment Purpose : Methods : Results . Radiology. 2010;254:110.CrossRefPubMed
14.
go back to reference Pedersen M, Vajda Z, Stødkilde-Jørgensen H, Nielsen S, Frøkiaer J. Furosemide increases water content in renal tissue. Am J Physiol Renal Physiol. 2007;292:F1645–51.CrossRefPubMed Pedersen M, Vajda Z, Stødkilde-Jørgensen H, Nielsen S, Frøkiaer J. Furosemide increases water content in renal tissue. Am J Physiol Renal Physiol. 2007;292:F1645–51.CrossRefPubMed
15.
go back to reference Prasad PV. Evaluation of intra-renal oxygenation by BOLD MRI. Nephron Clin Pract. 2006;103:c58–65.CrossRefPubMed Prasad PV. Evaluation of intra-renal oxygenation by BOLD MRI. Nephron Clin Pract. 2006;103:c58–65.CrossRefPubMed
16.
go back to reference Workman P, Aboagye EO, Balkwill F, Balmain A, Bruder G, Chaplin DJ, Double JA, Everitt J, Farningham DAH, Glennie MJ, Kelland LR, Robinson V, Stratford IJ, Tozer GM, Watson S, Wedge SR, Eccles SA. Guidelines for the welfare and use of animals in cancer research. Br J Cancer. 2010;102:1555–77.CrossRefPubMedPubMedCentral Workman P, Aboagye EO, Balkwill F, Balmain A, Bruder G, Chaplin DJ, Double JA, Everitt J, Farningham DAH, Glennie MJ, Kelland LR, Robinson V, Stratford IJ, Tozer GM, Watson S, Wedge SR, Eccles SA. Guidelines for the welfare and use of animals in cancer research. Br J Cancer. 2010;102:1555–77.CrossRefPubMedPubMedCentral
17.
go back to reference Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: The arrive guidelines for reporting animal research. PLoS Biol. 2010;8:e1000412.CrossRefPubMedPubMedCentral Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: The arrive guidelines for reporting animal research. PLoS Biol. 2010;8:e1000412.CrossRefPubMedPubMedCentral
18.
go back to reference Su MY, Wang Z, Roth GM, Lao X, Samoszuk MK, Nalcioglu O. Pharmacokinetic changes induced by vasomodulators in kidneys, livers, muscles, and implanted tumors in rats as measured by dynamic Gd-DTPA-enhanced MRI. Magn Reson Med. 1996;36:868–77.CrossRefPubMed Su MY, Wang Z, Roth GM, Lao X, Samoszuk MK, Nalcioglu O. Pharmacokinetic changes induced by vasomodulators in kidneys, livers, muscles, and implanted tumors in rats as measured by dynamic Gd-DTPA-enhanced MRI. Magn Reson Med. 1996;36:868–77.CrossRefPubMed
19.
go back to reference Al-Merani SAMA, Brooks DP, Chapman BJ, Munday KA. The Half-Lives of Angiotensin II, Angiotensin II-amide, Angiotensin III, Sar1-Ala8-Angiotensin II and Renin in the circulatory system of the Rat. J Physiol. 1978;278:471–90.CrossRefPubMedPubMedCentral Al-Merani SAMA, Brooks DP, Chapman BJ, Munday KA. The Half-Lives of Angiotensin II, Angiotensin II-amide, Angiotensin III, Sar1-Ala8-Angiotensin II and Renin in the circulatory system of the Rat. J Physiol. 1978;278:471–90.CrossRefPubMedPubMedCentral
20.
go back to reference Koh D-M, Collins DJ. Diffusion-weighted MRI in the body: applications and challenges in oncology. Am J Roentgenol. 2007;188:1622–35.CrossRef Koh D-M, Collins DJ. Diffusion-weighted MRI in the body: applications and challenges in oncology. Am J Roentgenol. 2007;188:1622–35.CrossRef
21.
go back to reference Neil JJ, Bretthorst GL. On the Use of Bayesian Probability Theory for Analysis of Exponential Decay Data: An Example Taken from Intravoxel Incoherent Motion Experiments. Magn Reson Med. 1993;29:642–7.CrossRefPubMed Neil JJ, Bretthorst GL. On the Use of Bayesian Probability Theory for Analysis of Exponential Decay Data: An Example Taken from Intravoxel Incoherent Motion Experiments. Magn Reson Med. 1993;29:642–7.CrossRefPubMed
22.
go back to reference Dyvorne HA, Galea N, Nevers T, Fiel MI, Carpenter D, Wong E, Orton M, de Oliveira A, Feiweier T, Vachon M-L, Babb JS, Taouli B. Diffusion-weighted imaging of the liver with multiple b values: effect of diffusion gradient polarity and breathing acquisition on image quality and intravoxel incoherent motion parameters--a pilot study. Radiology. 2013;266:920–9.CrossRefPubMedPubMedCentral Dyvorne HA, Galea N, Nevers T, Fiel MI, Carpenter D, Wong E, Orton M, de Oliveira A, Feiweier T, Vachon M-L, Babb JS, Taouli B. Diffusion-weighted imaging of the liver with multiple b values: effect of diffusion gradient polarity and breathing acquisition on image quality and intravoxel incoherent motion parameters--a pilot study. Radiology. 2013;266:920–9.CrossRefPubMedPubMedCentral
23.
go back to reference Gomez SI, Warner L, Haas JA, Bolterman RJ, Textor SC, Lerman LO, Romero JC. Increased hypoxia and reduced renal tubular response to furosemide detected by BOLD magnetic resonance imaging in swine renovascular hypertension. Am J Physiol Renal Physiol. 2009;297:F981–6.CrossRefPubMedPubMedCentral Gomez SI, Warner L, Haas JA, Bolterman RJ, Textor SC, Lerman LO, Romero JC. Increased hypoxia and reduced renal tubular response to furosemide detected by BOLD magnetic resonance imaging in swine renovascular hypertension. Am J Physiol Renal Physiol. 2009;297:F981–6.CrossRefPubMedPubMedCentral
24.
go back to reference Kusakabe Y, Matsushita T, Honda S, Okada S, Murase K. Using BOLD imaging to measure renal oxygenation dynamics in rats injected with diuretics. Magn Reson Med Sci. 2010;9:187–94.CrossRefPubMed Kusakabe Y, Matsushita T, Honda S, Okada S, Murase K. Using BOLD imaging to measure renal oxygenation dynamics in rats injected with diuretics. Magn Reson Med Sci. 2010;9:187–94.CrossRefPubMed
25.
go back to reference Cogan JJ, Humphreys MH, Calson CJ, Rapaport E. Renal effects of nitroprusside and hydralazine in patients with congestive heart failure. Circulation. 1980;61:316–23.CrossRefPubMed Cogan JJ, Humphreys MH, Calson CJ, Rapaport E. Renal effects of nitroprusside and hydralazine in patients with congestive heart failure. Circulation. 1980;61:316–23.CrossRefPubMed
26.
27.
go back to reference Li LP, Storey P, Pierchala L, Li W, Polzin J, Prasad P. Evaluation of the Reproducibility of Intrarenal R2* and ??R2* Measurements Following Administration of Furosemide and during Waterload. J Magn Reson Imaging. 2004;19:610–6.CrossRefPubMedPubMedCentral Li LP, Storey P, Pierchala L, Li W, Polzin J, Prasad P. Evaluation of the Reproducibility of Intrarenal R2* and ??R2* Measurements Following Administration of Furosemide and during Waterload. J Magn Reson Imaging. 2004;19:610–6.CrossRefPubMedPubMedCentral
28.
go back to reference Ries M, Basseau F, Tyndal B, Jones R, Deminière C, Catargi B, Combe C, Moonen CWT, Grenier N. Renal diffusion and BOLD MRI in experimental diabetic nephropathy. Blood oxygen level-dependent. J Magn Reson Imaging. 2003;17:104–13.CrossRefPubMed Ries M, Basseau F, Tyndal B, Jones R, Deminière C, Catargi B, Combe C, Moonen CWT, Grenier N. Renal diffusion and BOLD MRI in experimental diabetic nephropathy. Blood oxygen level-dependent. J Magn Reson Imaging. 2003;17:104–13.CrossRefPubMed
29.
go back to reference Raizada V, Skipper B, Luo W, Griffith J. Intracardiac and intrarenal renin-angiotensin systems: mechanisms of cardiovascular and renal effects. J Investig Med. 2007;55:341.CrossRefPubMed Raizada V, Skipper B, Luo W, Griffith J. Intracardiac and intrarenal renin-angiotensin systems: mechanisms of cardiovascular and renal effects. J Investig Med. 2007;55:341.CrossRefPubMed
30.
go back to reference Schachinger H, Klarhöfer M, Linder L, Drewe J, Scheffler K. Angiotensin II decreases the renal MRI blood oxygenation level-dependent signal. Hypertension. 2006;47:1062–6.CrossRefPubMed Schachinger H, Klarhöfer M, Linder L, Drewe J, Scheffler K. Angiotensin II decreases the renal MRI blood oxygenation level-dependent signal. Hypertension. 2006;47:1062–6.CrossRefPubMed
31.
go back to reference Linn J, Schwarz F, Schichor C, Wiesmann M. Cranial MRI of small rodents using a clinical MR scanner. Methods. 2007;43:2–11.CrossRefPubMed Linn J, Schwarz F, Schichor C, Wiesmann M. Cranial MRI of small rodents using a clinical MR scanner. Methods. 2007;43:2–11.CrossRefPubMed
Metadata
Title
Modulation of renal oxygenation and perfusion in rat kidney monitored by quantitative diffusion and blood oxygen level dependent magnetic resonance imaging on a clinical 1.5T platform
Authors
Neil P. Jerome
Jessica K. R. Boult
Matthew R. Orton
James d’Arcy
David J. Collins
Martin O. Leach
Dow-Mu Koh
Simon P. Robinson
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2016
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-016-0356-x

Other articles of this Issue 1/2016

BMC Nephrology 1/2016 Go to the issue