Skip to main content
Top
Published in: BMC Nephrology 1/2016

Open Access 01-12-2016 | Correspondence

Low-protein diets for chronic kidney disease patients: the Italian experience

Authors: Vincenzo Bellizzi, Adamasco Cupisti, Francesco Locatelli, Piergiorgio Bolasco, Giuliano Brunori, Giovanni Cancarini, Stefania Caria, Luca De Nicola, Biagio R. Di Iorio, Lucia Di Micco, Enrico Fiaccadori, Giacomo Garibotto, Marcora Mandreoli, Roberto Minutolo, Lamberto Oldrizzi, Giorgina B. Piccoli, Giuseppe Quintaliani, Domenico Santoro, Serena Torraca, Battista F. Viola, on behalf of the “Conservative Treatment of CKD” study group of the Italian Society of Nephrology

Published in: BMC Nephrology | Issue 1/2016

Login to get access

Abstract

Background

Nutritional treatment has always represented a major feature of CKD management. Over the decades, the use of nutritional treatment in CKD patients has been marked by several goals. The first of these include the attainment of metabolic and fluid control together with the prevention and correction of signs, symptoms and complications of advanced CKD. The aim of this first stage is the prevention of malnutrition and a delay in the commencement of dialysis. Subsequently, nutritional manipulations have also been applied in association with other therapeutic interventions in an attempt to control several cardiovascular risk factors associated with CKD and to improve the patient's overall outcome. Over time and in reference to multiple aims, the modalities of nutritional treatment have been focused not only on protein intake but also on other nutrients.

Discussion

This paper describes the pathophysiological basis and rationale of nutritional treatment in CKD and also provides a report on extensive experience in the field of renal diets in Italy, with special attention given to approaches in clinical practice and management.

Summary

Italian nephrologists have a longstanding tradition in implementing low protein diets in the treatment of CKD patients, with the principle objective of alleviating uremic symptoms, improving nutritional status and also a possibility of slowing down the progression of CKD or delaying the start of dialysis. A renewed interest in this field is based on the aim of implementing a wider nutritional therapy other than only reducing the protein intake, paying careful attention to factors such as energy intake, the quality of proteins and phosphate and sodium intakes, making today’s low-protein diet program much more ambitious than previous. The motivation was the reduction in progression of renal insufficiency through reduction of proteinuria, a better control of blood pressure values and also through correction of metabolic acidosis. One major goal of the flexible and innovative Italian approach to the low-protein diet in CKD patients is the improvement of patient adherence, a crucial factor in the successful implementation of a low-protein diet program.
Literature
1.
go back to reference Giovannetti S, Maggiore Q. A low nitrogen diet with proteins of high biological value for severe chronic uremia. Lancet. 1964;1:1000–3.PubMed Giovannetti S, Maggiore Q. A low nitrogen diet with proteins of high biological value for severe chronic uremia. Lancet. 1964;1:1000–3.PubMed
2.
go back to reference Brenner BM, Meyer TW, Hostetter TH. Dietary protein intake and the progressive nature of kidney disease: the role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation, and intrinsic renal disease. N Engl J Med. 1982;307:652–9.PubMed Brenner BM, Meyer TW, Hostetter TH. Dietary protein intake and the progressive nature of kidney disease: the role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation, and intrinsic renal disease. N Engl J Med. 1982;307:652–9.PubMed
3.
go back to reference Mitch WE, Remuzzi G. Diet for patients with chronic kidney disease, still worth prescribing. J Am Soc Nephrol. 2004;15:234–7.PubMed Mitch WE, Remuzzi G. Diet for patients with chronic kidney disease, still worth prescribing. J Am Soc Nephrol. 2004;15:234–7.PubMed
4.
go back to reference Maschio G, Oldrizzi L, Tessitore N, D’Angelo A, Valvo E, Lupo A, et al. Effects of dietary protein and phosphorus restriction on the progression of early renal failure. Kidney Int. 1982;22:371–6.PubMed Maschio G, Oldrizzi L, Tessitore N, D’Angelo A, Valvo E, Lupo A, et al. Effects of dietary protein and phosphorus restriction on the progression of early renal failure. Kidney Int. 1982;22:371–6.PubMed
5.
go back to reference Barsotti G, Giannoni A, Morelli E, Lazzeri M, Vlamis I, Baldi R, Giovannetti S. The decline of renal function slowed by very low phosphorus intake in chronic renal patients following a low nitrogen diet. Clin Nephrol. 1984;21:54–9.PubMed Barsotti G, Giannoni A, Morelli E, Lazzeri M, Vlamis I, Baldi R, Giovannetti S. The decline of renal function slowed by very low phosphorus intake in chronic renal patients following a low nitrogen diet. Clin Nephrol. 1984;21:54–9.PubMed
6.
go back to reference Isakova T, Wolf MS. FGF23 or PTH: which comes first in CKD? Kidney Int. 2010;78:947–9.PubMed Isakova T, Wolf MS. FGF23 or PTH: which comes first in CKD? Kidney Int. 2010;78:947–9.PubMed
7.
go back to reference Zoccali C, Ruggenenti P, Perna A, Leonardis D, Tripepi R, Tripepi G, et al. Phosphate may promote CKD progression and attenuate renoprotective effect of ACE inhibition. J Am Soc Nephrol. 2011;22:1923–30.PubMedPubMedCentral Zoccali C, Ruggenenti P, Perna A, Leonardis D, Tripepi R, Tripepi G, et al. Phosphate may promote CKD progression and attenuate renoprotective effect of ACE inhibition. J Am Soc Nephrol. 2011;22:1923–30.PubMedPubMedCentral
8.
go back to reference Locatelli F, Del Vecchio L. Protein restriction: a revisited old strategy with new opportunities? Nephrol Dial Transplant. 2014;29:1624–7.PubMed Locatelli F, Del Vecchio L. Protein restriction: a revisited old strategy with new opportunities? Nephrol Dial Transplant. 2014;29:1624–7.PubMed
9.
go back to reference Tom K, Young VR, Chapman T, Masud T, Akpele L, Maroni BJ. Long-term adaptive responses to dietary protein restriction in chronic renal failure. Am J Physiol Endocrinol Metab. 1995;268:E668–77. Tom K, Young VR, Chapman T, Masud T, Akpele L, Maroni BJ. Long-term adaptive responses to dietary protein restriction in chronic renal failure. Am J Physiol Endocrinol Metab. 1995;268:E668–77.
10.
go back to reference D’Alessandro C, Rossi A, Innocenti M, Ricchiuti G, Bozzoli L, Sbragia G, et al. Dietary protein restriction for renal patients: don’t forget protein-free foods. J Ren Nutr. 2013;23:367–71.PubMed D’Alessandro C, Rossi A, Innocenti M, Ricchiuti G, Bozzoli L, Sbragia G, et al. Dietary protein restriction for renal patients: don’t forget protein-free foods. J Ren Nutr. 2013;23:367–71.PubMed
11.
go back to reference Barsotti G, Morelli E, Cupisti A, Meola M, Dani L, Giovannetti S. A low-nitrogen low-phosphorus vegan diet for patients with chronic renal failure. Nephron. 1996;74:390–4.PubMed Barsotti G, Morelli E, Cupisti A, Meola M, Dani L, Giovannetti S. A low-nitrogen low-phosphorus vegan diet for patients with chronic renal failure. Nephron. 1996;74:390–4.PubMed
12.
go back to reference Cupisti A, Kalantar-Zadeh K. Management of Natural and Added Dietary Phosphorus Burden in Kidney Disease. Seminar Nephrology. 2013;33:180–90. Cupisti A, Kalantar-Zadeh K. Management of Natural and Added Dietary Phosphorus Burden in Kidney Disease. Seminar Nephrology. 2013;33:180–90.
13.
go back to reference Cupisti A, Morelli E, Meola M, Barsotti M, Barsotti G. Vegetarian diet alternated with conventional low-protein diet for patients with chronic renal failure. J Ren Nutr. 2002;12:32–7.PubMed Cupisti A, Morelli E, Meola M, Barsotti M, Barsotti G. Vegetarian diet alternated with conventional low-protein diet for patients with chronic renal failure. J Ren Nutr. 2002;12:32–7.PubMed
14.
go back to reference Aparicio M, Bellizzi V, Chauveau P, Cupisti A, Ecder T, Fouque D, et al. Ketoacid therapy in predialysis chronic kidney disease patients: final consensus. J Ren Nutr. 2012;22 Suppl 2:22–4. Aparicio M, Bellizzi V, Chauveau P, Cupisti A, Ecder T, Fouque D, et al. Ketoacid therapy in predialysis chronic kidney disease patients: final consensus. J Ren Nutr. 2012;22 Suppl 2:22–4.
15.
go back to reference Aparicio M, Bellizzi V, Chauveau P, Cupisti A, Ecder T, Fouque D, et al. Do Ketoanalogues Still Have a Role in Delaying Dialysis Initiation in CKD Predialysis Patients? Semin Dial. 2013;26:714–9.PubMed Aparicio M, Bellizzi V, Chauveau P, Cupisti A, Ecder T, Fouque D, et al. Do Ketoanalogues Still Have a Role in Delaying Dialysis Initiation in CKD Predialysis Patients? Semin Dial. 2013;26:714–9.PubMed
16.
go back to reference Barsotti G, Ciardella F, Morelli E, Cupisti A, Mantovanelli A, Giovannetti S. Nutritional treatment of renal failure in type 1 diabetic nephropathy. Clin Nephrol. 1988;29:280–7.PubMed Barsotti G, Ciardella F, Morelli E, Cupisti A, Mantovanelli A, Giovannetti S. Nutritional treatment of renal failure in type 1 diabetic nephropathy. Clin Nephrol. 1988;29:280–7.PubMed
17.
go back to reference Aparicio M, Gin H, Potaux L, Bouchet JL, Morel D, Aubertin J. Effect of a ketoacid diet on glucose tolerance and tissue insulin sensitivity. Kidney Int. 1989;27(Suppl):231–5. Aparicio M, Gin H, Potaux L, Bouchet JL, Morel D, Aubertin J. Effect of a ketoacid diet on glucose tolerance and tissue insulin sensitivity. Kidney Int. 1989;27(Suppl):231–5.
18.
go back to reference Gin H, Rigalleau V, Aparicio M. Lipids, protein intake, and diabetic nephropathy. Diabetes Metab. 2000;26 Suppl 4:45–53.PubMed Gin H, Rigalleau V, Aparicio M. Lipids, protein intake, and diabetic nephropathy. Diabetes Metab. 2000;26 Suppl 4:45–53.PubMed
19.
go back to reference Kaysen GA, Gambertoglio J, Jimenez I, Jones H, Hutchison FN. Effect of dietary protein intake on albumin homeostasis in nephrotic patients. Kidney Int. 1986;29:572–7.PubMed Kaysen GA, Gambertoglio J, Jimenez I, Jones H, Hutchison FN. Effect of dietary protein intake on albumin homeostasis in nephrotic patients. Kidney Int. 1986;29:572–7.PubMed
20.
go back to reference Barsotti G, Morelli E, Cupisti A, Bertoncini P, Giovannetti S. A special, supplemented “vegan” diet for nephrotic patients. Am J Nephrol. 1991;11:380–5.PubMed Barsotti G, Morelli E, Cupisti A, Bertoncini P, Giovannetti S. A special, supplemented “vegan” diet for nephrotic patients. Am J Nephrol. 1991;11:380–5.PubMed
21.
go back to reference D’Amico G, Remuzzi G, Maschio G, Gentile MG, Gotti E, Oldrizzi L, et al. Effect of dietary proteins and lipids in patients with membranous nephropathy and nephrotic syndrome. Clin Nephrol. 1991;35:237–42.PubMed D’Amico G, Remuzzi G, Maschio G, Gentile MG, Gotti E, Oldrizzi L, et al. Effect of dietary proteins and lipids in patients with membranous nephropathy and nephrotic syndrome. Clin Nephrol. 1991;35:237–42.PubMed
22.
go back to reference D’Amico G, Gentile MG, Manna G, Fellin G, Ciceri R, Cofano F, et al. Effect of vegetarian soy diet on hyperlipidaemia in nephrotic syndrome. Lancet. 1992;339:1131–4.PubMed D’Amico G, Gentile MG, Manna G, Fellin G, Ciceri R, Cofano F, et al. Effect of vegetarian soy diet on hyperlipidaemia in nephrotic syndrome. Lancet. 1992;339:1131–4.PubMed
23.
go back to reference Cupisti A, Bottai A, Bellizzi V, Brunori G, Cianciaruso B, De Nicola L, et al. Characteristics of patients with chronic kidney disease referred to a nephrology outpatient clinic: results of Nefrodata study. G Ital Nefrol. 2015;32(2). Cupisti A, Bottai A, Bellizzi V, Brunori G, Cianciaruso B, De Nicola L, et al. Characteristics of patients with chronic kidney disease referred to a nephrology outpatient clinic: results of Nefrodata study. G Ital Nefrol. 2015;32(2).
24.
go back to reference De Nicola L, Minutolo R, Chiodini P, Zoccali C, Castellino P, Donadio C. at al. TArget Blood Pressure LEvels in Chronic Kidney Disease (TABLE in CKD) Study Group. Global approach to cardiovascular risk in chronic kidney disease: reality and opportunities for intervention. Kidney Int. 2006;69:538–45.PubMed De Nicola L, Minutolo R, Chiodini P, Zoccali C, Castellino P, Donadio C. at al. TArget Blood Pressure LEvels in Chronic Kidney Disease (TABLE in CKD) Study Group. Global approach to cardiovascular risk in chronic kidney disease: reality and opportunities for intervention. Kidney Int. 2006;69:538–45.PubMed
25.
26.
go back to reference Locatelli F, Alberti D, Graziani G, Buccianti G, Redaelli B, Giangrande A. Prospective, randomised, multicentre trial of effect of protein restriction on progression of chronic renal insufficiency. Northern Italian Cooperative Study Group Lancet. 1991;337:1299–304. Locatelli F, Alberti D, Graziani G, Buccianti G, Redaelli B, Giangrande A. Prospective, randomised, multicentre trial of effect of protein restriction on progression of chronic renal insufficiency. Northern Italian Cooperative Study Group Lancet. 1991;337:1299–304.
27.
go back to reference Kasiske BL, Lakatua JD, Ma JZ, Louis TA. A meta-analysis of the effects of dietary protein restriction on the rate of decline in renal function. Am J Kidney Dis. 1998;31:954–61.PubMed Kasiske BL, Lakatua JD, Ma JZ, Louis TA. A meta-analysis of the effects of dietary protein restriction on the rate of decline in renal function. Am J Kidney Dis. 1998;31:954–61.PubMed
29.
go back to reference Morelli E, Baldi R, Barsotti G, Ciardella F, Cupisti A, Dani L, et al. Combined therapy for selected chronic uremic patients: infrequent hemodialysis and nutritional management. Nephron. 1987;47:161–6.PubMed Morelli E, Baldi R, Barsotti G, Ciardella F, Cupisti A, Dani L, et al. Combined therapy for selected chronic uremic patients: infrequent hemodialysis and nutritional management. Nephron. 1987;47:161–6.PubMed
30.
go back to reference Locatelli F, Andrulli S, Pontoriero G, Di Filippo S, Bigi MC. Supplemented Low-Protein Diet and Once Weekly Hemodialysis. Am J Kidney Dis. 1994;24:192–204.PubMed Locatelli F, Andrulli S, Pontoriero G, Di Filippo S, Bigi MC. Supplemented Low-Protein Diet and Once Weekly Hemodialysis. Am J Kidney Dis. 1994;24:192–204.PubMed
31.
go back to reference Caria S, Cupisti A, Sau G, Bolasco P. The incremental treatment of ESRD: A low-protein diet combined with weekly hemodialysis may be beneficial for selected patients. BMC Nephrol. 2014;15:172.PubMedPubMedCentral Caria S, Cupisti A, Sau G, Bolasco P. The incremental treatment of ESRD: A low-protein diet combined with weekly hemodialysis may be beneficial for selected patients. BMC Nephrol. 2014;15:172.PubMedPubMedCentral
32.
go back to reference Duranton F, Cohen G, De Smet R, Rodriguez M, Jankowski J, Vanholder R, et al. Normal and pathologic concentrations of uremic toxins. J Am Soc Nephrol. 2012;23:1258–70.PubMedPubMedCentral Duranton F, Cohen G, De Smet R, Rodriguez M, Jankowski J, Vanholder R, et al. Normal and pathologic concentrations of uremic toxins. J Am Soc Nephrol. 2012;23:1258–70.PubMedPubMedCentral
33.
go back to reference Lisowska-Myjak B. Uremic toxins and their effects on multiple organ systems. Nephron Clin Pract. 2014;128:303–11.PubMed Lisowska-Myjak B. Uremic toxins and their effects on multiple organ systems. Nephron Clin Pract. 2014;128:303–11.PubMed
34.
go back to reference Vanholder R. Uremic toxins. In: UpToDate. 2015. http://www.uptodate.com/contents/uremic-toxins. Vanholder R. Uremic toxins. In: UpToDate. 2015. http://​www.​uptodate.​com/​contents/​uremic-toxins.​
35.
go back to reference Garibotto G, Sofia A, Saffioti S, Bonanni A, Mannucci I, Verzola D. Amino acid and protein metabolism in the human kidney and in patients with chronic kidney disease. Clin Nutr. 2010;29:424–33.PubMed Garibotto G, Sofia A, Saffioti S, Bonanni A, Mannucci I, Verzola D. Amino acid and protein metabolism in the human kidney and in patients with chronic kidney disease. Clin Nutr. 2010;29:424–33.PubMed
36.
go back to reference Niwa T. Indoxyl sulfate is a nephro-vascular toxin. J Ren Nutr. 2010;20 Suppl 5:2–6. Niwa T. Indoxyl sulfate is a nephro-vascular toxin. J Ren Nutr. 2010;20 Suppl 5:2–6.
37.
go back to reference Ellis RJ, Small DM, Vesey DA. Indoxyl sulphate and kidney disease: causes, consequences and interventions. Nephrology. 2016;21(3):170–7. doi:10.1111/nep.12580. Ellis RJ, Small DM, Vesey DA. Indoxyl sulphate and kidney disease: causes, consequences and interventions. Nephrology. 2016;21(3):170–7. doi:10.​1111/​nep.​12580.
38.
go back to reference Lin CJ, Chen HH, Pan CF, Chuang CK, Wang TJ, Sun FJ, Wu CJ. p-Cresylsulfate and indoxyl sulfate level at different stages of chronic kidney disease. J Clin Lab Anal. 2011;25:191–7.PubMed Lin CJ, Chen HH, Pan CF, Chuang CK, Wang TJ, Sun FJ, Wu CJ. p-Cresylsulfate and indoxyl sulfate level at different stages of chronic kidney disease. J Clin Lab Anal. 2011;25:191–7.PubMed
39.
go back to reference Barreto FC, Barreto DV, Liabeuf S, Meert N, Glorieux G, Temmar M, et al. European Uremic Toxin Work Group (EUTox). Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients. Clin J Am Soc Nephrol. 2009;4:1551–8.PubMedPubMedCentral Barreto FC, Barreto DV, Liabeuf S, Meert N, Glorieux G, Temmar M, et al. European Uremic Toxin Work Group (EUTox). Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients. Clin J Am Soc Nephrol. 2009;4:1551–8.PubMedPubMedCentral
40.
go back to reference Imanishi Y, Koyama H, Inaba M, Okuno S, Nishizawa Y, Morii H, Otani S. Phosphorus intake regulates intestinal function and polyamine metabolism in uremia. Kidney Int. 1996;49:499–505.PubMed Imanishi Y, Koyama H, Inaba M, Okuno S, Nishizawa Y, Morii H, Otani S. Phosphorus intake regulates intestinal function and polyamine metabolism in uremia. Kidney Int. 1996;49:499–505.PubMed
41.
go back to reference KDIGO. clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD–MBD). Kidney Int. 2009;113:Suppl:1–130. KDIGO. clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD–MBD). Kidney Int. 2009;113:Suppl:1–130.
42.
43.
go back to reference Da J, Xie X, Wolf M. Serum Phosphorus and Progression of CKD and Mortality: A Meta-analysis of Cohort Studies. Am J Kidney Dis. 2015;66:258–65.PubMed Da J, Xie X, Wolf M. Serum Phosphorus and Progression of CKD and Mortality: A Meta-analysis of Cohort Studies. Am J Kidney Dis. 2015;66:258–65.PubMed
44.
go back to reference du Cailar G, Ribstein J, Mimran A. Dietary sodium and target organ damage in essential hypertension. Am J Hypertens. 2002;15:222–9.PubMed du Cailar G, Ribstein J, Mimran A. Dietary sodium and target organ damage in essential hypertension. Am J Hypertens. 2002;15:222–9.PubMed
45.
go back to reference Verhave JC, Hillege HL, Burgerhof JG, Janssen WM, Gansevoort RT, Navis GJ, et al. Sodium intake affects urinary albumin excretion especially in overweight subjects. J Intern Med. 2004;256:324–30.PubMed Verhave JC, Hillege HL, Burgerhof JG, Janssen WM, Gansevoort RT, Navis GJ, et al. Sodium intake affects urinary albumin excretion especially in overweight subjects. J Intern Med. 2004;256:324–30.PubMed
46.
go back to reference Swift PA, Markandu ND, Sagnella GA, He FJ, Macgregor GA. Modest Salt Reduction Reduces Blood Pressure and Urine Protein Excretion in Black Hypertensives. A Randomized Control Trial Hypertension. 2005;46:308–12.PubMed Swift PA, Markandu ND, Sagnella GA, He FJ, Macgregor GA. Modest Salt Reduction Reduces Blood Pressure and Urine Protein Excretion in Black Hypertensives. A Randomized Control Trial Hypertension. 2005;46:308–12.PubMed
47.
go back to reference He FJ, Marciniak M, Visagie E, Markandu ND, Anand V, Dalton RN, MacGregor GA. Effect of modest salt reduction on blood pressure, urinary albumin, and pulse wave velocity in white, black, and Asian mild hypertensives. Hypertension. 2009;54:482–8.PubMed He FJ, Marciniak M, Visagie E, Markandu ND, Anand V, Dalton RN, MacGregor GA. Effect of modest salt reduction on blood pressure, urinary albumin, and pulse wave velocity in white, black, and Asian mild hypertensives. Hypertension. 2009;54:482–8.PubMed
48.
go back to reference Dobre M, Rahman M, Hostetter TH. Current status of bicarbonate in CKD. J Am Soc Nephrol. 2015;26:515–23.PubMed Dobre M, Rahman M, Hostetter TH. Current status of bicarbonate in CKD. J Am Soc Nephrol. 2015;26:515–23.PubMed
49.
go back to reference Saikumar JH, Kovesdy CP. Bicarbonate Therapy in End-Stage Renal Disease: Current Practice Trends and Implications. Semin Dial. 2015;28:370–6.PubMed Saikumar JH, Kovesdy CP. Bicarbonate Therapy in End-Stage Renal Disease: Current Practice Trends and Implications. Semin Dial. 2015;28:370–6.PubMed
50.
go back to reference Driver TH, Shlipak MG, Katz R, Driver TH, Shlipak MG, Katz R, et al. Low serum bicarbonate and kidney function decline: the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Kidney Dis. 2014;64:534–41.PubMedPubMedCentral Driver TH, Shlipak MG, Katz R, Driver TH, Shlipak MG, Katz R, et al. Low serum bicarbonate and kidney function decline: the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Kidney Dis. 2014;64:534–41.PubMedPubMedCentral
51.
go back to reference Motil KJ, Matthews DE, Bier DM, Burke JF, Munro HN, Young VR. Whole-body leucine and lysine metabolism: response to dietary protein intake in young men. Am J Physiol. 1981;240:712–21. Motil KJ, Matthews DE, Bier DM, Burke JF, Munro HN, Young VR. Whole-body leucine and lysine metabolism: response to dietary protein intake in young men. Am J Physiol. 1981;240:712–21.
52.
go back to reference Young VR. Kinetics of human acid metabolism: nutritional implications and some lessons. McCollum Award Lecture. Am J Clin Nutr. 1987;46:709–25.PubMed Young VR. Kinetics of human acid metabolism: nutritional implications and some lessons. McCollum Award Lecture. Am J Clin Nutr. 1987;46:709–25.PubMed
53.
go back to reference Workeneh BT, Mitch WE. Review of muscle wasting associated with chronic kidney disease. Am J Clin Nutr. 2010;91:1128–32. Workeneh BT, Mitch WE. Review of muscle wasting associated with chronic kidney disease. Am J Clin Nutr. 2010;91:1128–32.
54.
go back to reference Garibotto G, Bonanni A, Verzola D. Effect of kidney failure and hemodialysis on protein and aminoacid metabolism. Curr Opin Clin Nutr Metab Care. 2012;15:78–84.PubMed Garibotto G, Bonanni A, Verzola D. Effect of kidney failure and hemodialysis on protein and aminoacid metabolism. Curr Opin Clin Nutr Metab Care. 2012;15:78–84.PubMed
55.
go back to reference Kopple JD, Greene T, Chumlea WC. Relationship between nutritional status and the glomerular filtration rate: results from the MDRD study. Kidney Int. 2000;57:1688–703.PubMed Kopple JD, Greene T, Chumlea WC. Relationship between nutritional status and the glomerular filtration rate: results from the MDRD study. Kidney Int. 2000;57:1688–703.PubMed
56.
go back to reference Lim VS, Kopple JD. Protein metabolism in patients with chronic renal failure: role of uraemia and dialysis. Kidney Int. 2000;58:1–10.PubMed Lim VS, Kopple JD. Protein metabolism in patients with chronic renal failure: role of uraemia and dialysis. Kidney Int. 2000;58:1–10.PubMed
57.
go back to reference Bailey JL, Zheng B, Hu Z, Price SR, Mitch WE. Chronic kidney disease causes defects in signaling through the insulin receptor substrate/phosphatidylinositol 3-kinase/Akt pathway: implications for muscle atrophy. J Am Soc Nephrol. 2006;17:1388–94.PubMed Bailey JL, Zheng B, Hu Z, Price SR, Mitch WE. Chronic kidney disease causes defects in signaling through the insulin receptor substrate/phosphatidylinositol 3-kinase/Akt pathway: implications for muscle atrophy. J Am Soc Nephrol. 2006;17:1388–94.PubMed
58.
go back to reference Sun DF, Chen Y, Rabkin R. Work-induced changes in skeletal muscle IGF-I and myostatin gene expression in uraemia. Kidney Int. 2006;70:453–59.PubMed Sun DF, Chen Y, Rabkin R. Work-induced changes in skeletal muscle IGF-I and myostatin gene expression in uraemia. Kidney Int. 2006;70:453–59.PubMed
59.
go back to reference Zhang L, Wang XH, Wang H, Du J, Mitch WE. Satellite cell dysfunction and impaired IGF-I signaling cause CKD-induced muscle atrophy. J Am Soc Nephrol. 2010;21:419–27.PubMedPubMedCentral Zhang L, Wang XH, Wang H, Du J, Mitch WE. Satellite cell dysfunction and impaired IGF-I signaling cause CKD-induced muscle atrophy. J Am Soc Nephrol. 2010;21:419–27.PubMedPubMedCentral
60.
go back to reference Garibotto G, Paoletti E, Fiorini F, Russo R, Robaudo C, Deferrari G, Tizianello A. Peripheral metabolism of branched-chain ketoacids in patients with chronic renal failure. Miner Electrolyte Metab. 1993;19:25–31.PubMed Garibotto G, Paoletti E, Fiorini F, Russo R, Robaudo C, Deferrari G, Tizianello A. Peripheral metabolism of branched-chain ketoacids in patients with chronic renal failure. Miner Electrolyte Metab. 1993;19:25–31.PubMed
61.
go back to reference Williams B, Hattersley J, Layward E, Walls J. Metabolic acidosis and skeletal muscle adaptation to low protein diets in chronic uremia. Kidney Int. 1991;40:779–86.PubMed Williams B, Hattersley J, Layward E, Walls J. Metabolic acidosis and skeletal muscle adaptation to low protein diets in chronic uremia. Kidney Int. 1991;40:779–86.PubMed
62.
go back to reference Goodship THJ, Mitch WE, Hoerr RA, Wagner DA, Steinman TI, Young VR. Adaptation to low-protein diets in renal failure: leucine turnover and nitrogen balance. J Am Soc Nephrol. 1990;1:66–75.PubMed Goodship THJ, Mitch WE, Hoerr RA, Wagner DA, Steinman TI, Young VR. Adaptation to low-protein diets in renal failure: leucine turnover and nitrogen balance. J Am Soc Nephrol. 1990;1:66–75.PubMed
63.
go back to reference Bernhard J, Beaufrere B, Laville M, Fouque D. Adaptive response to a low-protein diet in predialysis chronic renal failure patients. J Am Soc Nephrol. 2001;12:1249–54.PubMed Bernhard J, Beaufrere B, Laville M, Fouque D. Adaptive response to a low-protein diet in predialysis chronic renal failure patients. J Am Soc Nephrol. 2001;12:1249–54.PubMed
64.
go back to reference Masud T, Young VR, Chapman T, Maroni BJ. Adaptive responses to very low protein diets: the first comparison of ketoacids to essential aminoacids. Kidney Int. 1994;45:1182–92.PubMed Masud T, Young VR, Chapman T, Maroni BJ. Adaptive responses to very low protein diets: the first comparison of ketoacids to essential aminoacids. Kidney Int. 1994;45:1182–92.PubMed
65.
go back to reference Avesani C, Kamimura MA, Cuppari L. Energy expenditure in chronic kidney disease patients. J Ren Nutr. 2011;21:27–30.PubMed Avesani C, Kamimura MA, Cuppari L. Energy expenditure in chronic kidney disease patients. J Ren Nutr. 2011;21:27–30.PubMed
66.
go back to reference Monteon FL, Laidlaw S, Shaib JK, Kopple JD. Energy expenditure in patients with chronic renal failure. Kidney Int. 1986;30:741–7.PubMed Monteon FL, Laidlaw S, Shaib JK, Kopple JD. Energy expenditure in patients with chronic renal failure. Kidney Int. 1986;30:741–7.PubMed
67.
go back to reference Kopple JD, Monteon FJ. Effect of energy intake on nitrogen metabolism in non-dialyzed patients with chronic renal failure. Kidney Int. 1986;29:734–42.PubMed Kopple JD, Monteon FJ. Effect of energy intake on nitrogen metabolism in non-dialyzed patients with chronic renal failure. Kidney Int. 1986;29:734–42.PubMed
68.
go back to reference Ikizler TA, Greene JH, Wingard RL, Parker RA, Hakim RM. Spontaneous dietary protein intake during progression of chronic renal failure. J Am Soc Nephrol. 1995;6:1386–91.PubMed Ikizler TA, Greene JH, Wingard RL, Parker RA, Hakim RM. Spontaneous dietary protein intake during progression of chronic renal failure. J Am Soc Nephrol. 1995;6:1386–91.PubMed
70.
go back to reference Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (Macronutrients). National Academic Press; 2005. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (Macronutrients). National Academic Press; 2005.
71.
go back to reference Rigalleau V, Combe C, Blanchetier V, Aubertin J, Aparicio M, Gin H. Low protein diet in uremia: effects on glucose metabolism and energy production rate. Kidney Int. 1997;51:1222–7.PubMed Rigalleau V, Combe C, Blanchetier V, Aubertin J, Aparicio M, Gin H. Low protein diet in uremia: effects on glucose metabolism and energy production rate. Kidney Int. 1997;51:1222–7.PubMed
74.
go back to reference O’Donnell MJ, Yusuf S, Mente A, Gao P, Mann JF, Teo K, et al. Urinary sodium and potassium excretion and risk of cardiovascular events. JAMA. 2011;306:2229–38.PubMed O’Donnell MJ, Yusuf S, Mente A, Gao P, Mann JF, Teo K, et al. Urinary sodium and potassium excretion and risk of cardiovascular events. JAMA. 2011;306:2229–38.PubMed
75.
go back to reference Millward DJ. Optimal intakes of protein in the human diet. Proc Nutr Soc. 1999;58:403–13.PubMed Millward DJ. Optimal intakes of protein in the human diet. Proc Nutr Soc. 1999;58:403–13.PubMed
76.
go back to reference Cirillo M, Lombardi C, Chiricone D, De Santo NG, Zanchetti A, Bilancio G. Protein intake and kidney function in the middle-age population: contrast between cross-sectional and longitudinal data. Nephrol Dial Transplant. 2014;29:1733–40.PubMed Cirillo M, Lombardi C, Chiricone D, De Santo NG, Zanchetti A, Bilancio G. Protein intake and kidney function in the middle-age population: contrast between cross-sectional and longitudinal data. Nephrol Dial Transplant. 2014;29:1733–40.PubMed
77.
go back to reference Mozaffarian D, Fahimi S, Singh GM, Micha R, Khatibzadeh S, et al. Global Burden of Diseases Nutrition and Chronic Diseases Expert Group. Global sodium consumption and death from cardiovascular causes. N Engl J Med. 2014;371:624–34.PubMed Mozaffarian D, Fahimi S, Singh GM, Micha R, Khatibzadeh S, et al. Global Burden of Diseases Nutrition and Chronic Diseases Expert Group. Global sodium consumption and death from cardiovascular causes. N Engl J Med. 2014;371:624–34.PubMed
78.
go back to reference Donfrancesco C, Ippolito R, Lo Noce C, Palmieri L, Iacone R, Russo O, et al. Excess dietary sodium and inadequate potassium intake in Italy: Results of the MINISAL study. Nutr Metab Cardiovasc Dis. 2013;23:850–6.PubMed Donfrancesco C, Ippolito R, Lo Noce C, Palmieri L, Iacone R, Russo O, et al. Excess dietary sodium and inadequate potassium intake in Italy: Results of the MINISAL study. Nutr Metab Cardiovasc Dis. 2013;23:850–6.PubMed
79.
go back to reference KDIGO Guidelines, Chapter 3. Management of progression and complications of CKD. Kidney Int. 2013; Suppl 3:73–90. KDIGO Guidelines, Chapter 3. Management of progression and complications of CKD. Kidney Int. 2013; Suppl 3:73–90.
80.
go back to reference De Nicola L, Minutolo R, Bellizzi V, Zoccali C, Cianciaruso B, Andreucci VE, et al. investigators of the TArget Blood Pressure LEvels in Chronic Kidney Disease (TABLE in CKD) Study Group. Achievement of target blood pressure levels in chronic kidney disease: a salty question? Am J Kidney Dis. 2004;43:782–95.PubMed De Nicola L, Minutolo R, Bellizzi V, Zoccali C, Cianciaruso B, Andreucci VE, et al. investigators of the TArget Blood Pressure LEvels in Chronic Kidney Disease (TABLE in CKD) Study Group. Achievement of target blood pressure levels in chronic kidney disease: a salty question? Am J Kidney Dis. 2004;43:782–95.PubMed
81.
go back to reference Bricker NS, Bourgoignie JJ, Weber H. The Kidney, Chapter 18. In: Brenner BM, Rector FC, editors. The renal response to progressive nephron loss. Philadelphia: W.B. Saunders Co.; 1976. Bricker NS, Bourgoignie JJ, Weber H. The Kidney, Chapter 18. In: Brenner BM, Rector FC, editors. The renal response to progressive nephron loss. Philadelphia: W.B. Saunders Co.; 1976.
82.
go back to reference De Nicola L, Chiodini P, Zoccali C, Borrelli S, Cianciaruso B, Di Iorio B, et al. SIN-TABLE CKD Study Group. Prognosis of CKD patients receiving outpatient nephrology care in Italy. Clin J Am Soc Nephrol. 2011;6:2421–28.PubMedPubMedCentral De Nicola L, Chiodini P, Zoccali C, Borrelli S, Cianciaruso B, Di Iorio B, et al. SIN-TABLE CKD Study Group. Prognosis of CKD patients receiving outpatient nephrology care in Italy. Clin J Am Soc Nephrol. 2011;6:2421–28.PubMedPubMedCentral
83.
go back to reference Minutolo R, Locatelli F, Gallieni M, Bonofiglio R, Fuiano G, Oldrizzi L, et al. REport of COmorbidities in non-Dialysis Renal Disease Population in Italy (RECORD-IT) Study Group. Anemia management in non-dialysis chronic kidney disease (CKD) patients: a multicenter prospective study in renal clinics. Nephrol Dial Transplant. 2013;28:3035–45.PubMed Minutolo R, Locatelli F, Gallieni M, Bonofiglio R, Fuiano G, Oldrizzi L, et al. REport of COmorbidities in non-Dialysis Renal Disease Population in Italy (RECORD-IT) Study Group. Anemia management in non-dialysis chronic kidney disease (CKD) patients: a multicenter prospective study in renal clinics. Nephrol Dial Transplant. 2013;28:3035–45.PubMed
84.
go back to reference Vegter S, Perna A, Postma MJ, Navis G, Remuzzi G, Ruggenenti P. Sodium intake, ACE inhibition, and progression to ESRD. J Am Soc Nephrol. 2012;23:165–73.PubMed Vegter S, Perna A, Postma MJ, Navis G, Remuzzi G, Ruggenenti P. Sodium intake, ACE inhibition, and progression to ESRD. J Am Soc Nephrol. 2012;23:165–73.PubMed
85.
go back to reference Lambers Heerspink HJ, Holtkamp FA, Parving HH, Navis GJ, Lewis JB, Ritz E, et al. Moderation of dietary sodium potentiates the renal and cardiovascular protective effects of angiotensin receptor blockers. Kidney Int. 2012;82:330–7.PubMed Lambers Heerspink HJ, Holtkamp FA, Parving HH, Navis GJ, Lewis JB, Ritz E, et al. Moderation of dietary sodium potentiates the renal and cardiovascular protective effects of angiotensin receptor blockers. Kidney Int. 2012;82:330–7.PubMed
86.
go back to reference D’Elia L, Rossi G, di CM S, Savino I, Galletti F, Strazzullo P. Meta-Analysis of the Effect of Dietary Sodium Restriction with or without Concomitant Renin-Angiotensin-Aldosterone System-Inhibiting Treatment on Albuminuria. Clin J Am Soc Nephrol. 2015;10:1542–52.PubMedPubMedCentral D’Elia L, Rossi G, di CM S, Savino I, Galletti F, Strazzullo P. Meta-Analysis of the Effect of Dietary Sodium Restriction with or without Concomitant Renin-Angiotensin-Aldosterone System-Inhibiting Treatment on Albuminuria. Clin J Am Soc Nephrol. 2015;10:1542–52.PubMedPubMedCentral
87.
go back to reference D’Alessandro C, Piccoli GB, Calella P, Brunori G, Pasticci F, Bellizzi V, et al. “Dietaly”: practical issues for the nutritional management of CKD patients in Italy. BMC Nephrol. 2016; submitted. D’Alessandro C, Piccoli GB, Calella P, Brunori G, Pasticci F, Bellizzi V, et al. “Dietaly”: practical issues for the nutritional management of CKD patients in Italy. BMC Nephrol. 2016; submitted.
88.
go back to reference Moranne O, Froissart M, Rossert J, Gauci C, Boffa JJ, Haymann JP, et al. NephroTest Study Group. Timing of onset of CKD-related metabolic complications. J Am Soc Nephrol. 2009;20:164–71.PubMedPubMedCentral Moranne O, Froissart M, Rossert J, Gauci C, Boffa JJ, Haymann JP, et al. NephroTest Study Group. Timing of onset of CKD-related metabolic complications. J Am Soc Nephrol. 2009;20:164–71.PubMedPubMedCentral
89.
go back to reference Bellizzi V, Scalfi L, Terracciano V, De Nicola L, Minutolo R, Marra M, et al. Early changes in bioelectrical estimates of body composition in chronic kidney disease. J Am Soc Nephrol. 2006;17:1481–7.PubMed Bellizzi V, Scalfi L, Terracciano V, De Nicola L, Minutolo R, Marra M, et al. Early changes in bioelectrical estimates of body composition in chronic kidney disease. J Am Soc Nephrol. 2006;17:1481–7.PubMed
90.
go back to reference Cianciaruso B, Pota A, Pisani A, Torraca S, Annecchini R, Lombardi P, et al. Metabolic effects of two low protein diets in chronic kidney disease stage IV-V: a randomized controlled trial. Nephrol Dial Transpl. 2008;23:636–44. Cianciaruso B, Pota A, Pisani A, Torraca S, Annecchini R, Lombardi P, et al. Metabolic effects of two low protein diets in chronic kidney disease stage IV-V: a randomized controlled trial. Nephrol Dial Transpl. 2008;23:636–44.
91.
go back to reference Milas NC, Nowalk MP, Akpele L, Castaldo L, Coyne T, Doroshenko L, et al. Factors associated with adherence to the dietary protein intervention in the Modification of Diet in Renal Disease Study. J Am Diet Assoc. 1995;95:295–300. Milas NC, Nowalk MP, Akpele L, Castaldo L, Coyne T, Doroshenko L, et al. Factors associated with adherence to the dietary protein intervention in the Modification of Diet in Renal Disease Study. J Am Diet Assoc. 1995;95:295–300.
92.
go back to reference Paes-Barreto JG, Silva MI, Qureshi AR, Bregman R, Cervante VF, Carrero JJ, Avesani CM. Can renal nutrition education improve adherence to a low-protein diet in patients with stages 3 to 5 chronic kidney disease? J Ren Nutr. 2013;23:164–71.PubMed Paes-Barreto JG, Silva MI, Qureshi AR, Bregman R, Cervante VF, Carrero JJ, Avesani CM. Can renal nutrition education improve adherence to a low-protein diet in patients with stages 3 to 5 chronic kidney disease? J Ren Nutr. 2013;23:164–71.PubMed
93.
go back to reference Dolecek TA, Olson MB, Caggiula AW, Dwyer JT, Milas NC, Gillis BP, et al. Registered dietitian time requirements in the Modificaton of Diet in Renal Disease Study. J Am Diet Assoc. 1995;95:1307–12.PubMed Dolecek TA, Olson MB, Caggiula AW, Dwyer JT, Milas NC, Gillis BP, et al. Registered dietitian time requirements in the Modificaton of Diet in Renal Disease Study. J Am Diet Assoc. 1995;95:1307–12.PubMed
94.
go back to reference Bellizzi V, Di Iorio BR, Brunori G, De Nicola L, Minutolo R, Conte G, et al. Assessment of nutritional practice in Italian chronic kidney disease clinics: a questionnaire-based survey. J Ren Nutr. 2010;20:82–90.PubMed Bellizzi V, Di Iorio BR, Brunori G, De Nicola L, Minutolo R, Conte G, et al. Assessment of nutritional practice in Italian chronic kidney disease clinics: a questionnaire-based survey. J Ren Nutr. 2010;20:82–90.PubMed
95.
go back to reference Pisani A, Riccio E, Bellizzi V, Caputo DL, Mozzillo G, Amato M, et al. 6-tips diet: a simplified dietary approach in patients with chronic renal disease. Clin Exp Nephrol: A clinical randomized trial; 2015. Epub ahead of print. Pisani A, Riccio E, Bellizzi V, Caputo DL, Mozzillo G, Amato M, et al. 6-tips diet: a simplified dietary approach in patients with chronic renal disease. Clin Exp Nephrol: A clinical randomized trial; 2015. Epub ahead of print.
96.
go back to reference Cianciaruso B, Pota A, Bellizzi V, Di Giuseppe D, Di Micco L, Minutolo R, et al. Effect of a low- versus moderate-protein diet on progression of CKD: follow-up of a randomized controlled trial. Am J Kidney Dis. 2009;54:1052–61.PubMed Cianciaruso B, Pota A, Bellizzi V, Di Giuseppe D, Di Micco L, Minutolo R, et al. Effect of a low- versus moderate-protein diet on progression of CKD: follow-up of a randomized controlled trial. Am J Kidney Dis. 2009;54:1052–61.PubMed
97.
go back to reference Kontessis P, Jones S, Dodds R, Trevisan R, Nosadini R, Fioretto P, et al. Renal, metabolic and hormonal responses to ingestion of animal and vegetable proteins. Kidney Int. 1990;38:136–44.PubMed Kontessis P, Jones S, Dodds R, Trevisan R, Nosadini R, Fioretto P, et al. Renal, metabolic and hormonal responses to ingestion of animal and vegetable proteins. Kidney Int. 1990;38:136–44.PubMed
98.
go back to reference Walser M, Coulter AW, Dighe S, Crantz FR. The effect of ketoanalogues of essential aminoacids in severe chronic uremia. J Clin Invest. 1973;52:2865–77.PubMedPubMedCentral Walser M, Coulter AW, Dighe S, Crantz FR. The effect of ketoanalogues of essential aminoacids in severe chronic uremia. J Clin Invest. 1973;52:2865–77.PubMedPubMedCentral
99.
go back to reference Marzocco S, Dal Piaz F, Di Micco L, Torraca S, Sirico ML, Tartaglia D, et al. Very low protein diet reduces indoxyl sulfate levels in chronic kidney disease. Blood Purif. 2013;35:196–201.PubMed Marzocco S, Dal Piaz F, Di Micco L, Torraca S, Sirico ML, Tartaglia D, et al. Very low protein diet reduces indoxyl sulfate levels in chronic kidney disease. Blood Purif. 2013;35:196–201.PubMed
100.
go back to reference Di Iorio BR, Minutolo R, De Nicola L, Bellizzi V, Catapano F, Iodice C, et al. Supplemented very low protein diet ameliorates responsiveness to erythropoietin in chronic renal failure. Kidney Int. 2003;64:1822–8.PubMed Di Iorio BR, Minutolo R, De Nicola L, Bellizzi V, Catapano F, Iodice C, et al. Supplemented very low protein diet ameliorates responsiveness to erythropoietin in chronic renal failure. Kidney Int. 2003;64:1822–8.PubMed
101.
go back to reference Bellizzi V, Di Iorio BR, De Nicola L, Minutolo R, Zamboli P, Trucillo P, et al. ERIKA Study-group. Very low protein diet supplemented with ketoanalogs improves blood pressure control in chronic kidney disease. Kidney Int. 2007;71:245–51.PubMed Bellizzi V, Di Iorio BR, De Nicola L, Minutolo R, Zamboli P, Trucillo P, et al. ERIKA Study-group. Very low protein diet supplemented with ketoanalogs improves blood pressure control in chronic kidney disease. Kidney Int. 2007;71:245–51.PubMed
102.
go back to reference Di Iorio B, Di Micco L, Torraca S, Sirico ML, Russo L, Pota A, et al. Acute effects of very-low-protein diet on FGF23 levels: a randomized study. Clin J Am Soc Nephrol. 2012;7:581–7.PubMed Di Iorio B, Di Micco L, Torraca S, Sirico ML, Russo L, Pota A, et al. Acute effects of very-low-protein diet on FGF23 levels: a randomized study. Clin J Am Soc Nephrol. 2012;7:581–7.PubMed
103.
go back to reference Di Iorio BR, Bellizzi V, Bellasi A, Torraca S, D’Arrigo G, Tripepi G, Zoccali C. Phosphate attenuates the anti-proteinuric effect of very low-protein diet in CKD patients. Nephrol Dial Transplant. 2013;28:632–40.PubMed Di Iorio BR, Bellizzi V, Bellasi A, Torraca S, D’Arrigo G, Tripepi G, Zoccali C. Phosphate attenuates the anti-proteinuric effect of very low-protein diet in CKD patients. Nephrol Dial Transplant. 2013;28:632–40.PubMed
104.
go back to reference Goraya N, Simoni J, Jo C, Wesson DE. Dietary acid reduction with fruits and vegetables or bicarbonate attenuates kidney injury in patients with a moderately reduced glomerular filtration rate due to hypertensive nephropathy. Kidney Int. 2012;81:86–93.PubMed Goraya N, Simoni J, Jo C, Wesson DE. Dietary acid reduction with fruits and vegetables or bicarbonate attenuates kidney injury in patients with a moderately reduced glomerular filtration rate due to hypertensive nephropathy. Kidney Int. 2012;81:86–93.PubMed
105.
go back to reference Piccoli GB, Leone F, Attini R, Parisi S, Fassio F, Deagostini MC, et al. Association of low-protein supplemented diets with fetal growth in pregnant women with CKD. Clin J Am Soc Nephrol. 2014;9:864–73.PubMedPubMedCentral Piccoli GB, Leone F, Attini R, Parisi S, Fassio F, Deagostini MC, et al. Association of low-protein supplemented diets with fetal growth in pregnant women with CKD. Clin J Am Soc Nephrol. 2014;9:864–73.PubMedPubMedCentral
106.
go back to reference Piccoli GB, Motta D, Martina G, Consiglio V, Gai M, Mezza E, et al. Low-protein vegetarian diet with alpha-chetoanalogues prior to pre-emptive pancreas-kidney transplantation. Rev Diabet Stud. 2004;1:95–102.PubMedPubMedCentral Piccoli GB, Motta D, Martina G, Consiglio V, Gai M, Mezza E, et al. Low-protein vegetarian diet with alpha-chetoanalogues prior to pre-emptive pancreas-kidney transplantation. Rev Diabet Stud. 2004;1:95–102.PubMedPubMedCentral
107.
go back to reference Bellizzi V, Chiodini P, Cupisti A, Viola BF, Pezzotta M, De Nicola L, et al. Very low-protein diet plus ketoacids in chronic kidney disease and risk of death during end-stage renal disease: a historical cohort controlled study. Nephrol Dial Transplant. 2015;30:71–7.PubMed Bellizzi V, Chiodini P, Cupisti A, Viola BF, Pezzotta M, De Nicola L, et al. Very low-protein diet plus ketoacids in chronic kidney disease and risk of death during end-stage renal disease: a historical cohort controlled study. Nephrol Dial Transplant. 2015;30:71–7.PubMed
108.
go back to reference Willcox DC, Willcox BJ, Todoriki H, Suzuki M. The Okinawan diet: health implications of a low-calorie, nutrient-dense, antioxidant-rich dietary pattern low in glycemic load. J Am Coll Nutr. 2009;28(Suppl):500–16. Willcox DC, Willcox BJ, Todoriki H, Suzuki M. The Okinawan diet: health implications of a low-calorie, nutrient-dense, antioxidant-rich dietary pattern low in glycemic load. J Am Coll Nutr. 2009;28(Suppl):500–16.
109.
go back to reference Piccoli GB, Attini R, Vasario E, Gaglioti P, Piccoli E, Consiglio V, et al. Vegetarian supplemented low-protein diets. A safe option for pregnant CKD patients: report of 12 pregnancies in 11 patients. Nephrol Dial Transplant. 2011;26:196–205.PubMed Piccoli GB, Attini R, Vasario E, Gaglioti P, Piccoli E, Consiglio V, et al. Vegetarian supplemented low-protein diets. A safe option for pregnant CKD patients: report of 12 pregnancies in 11 patients. Nephrol Dial Transplant. 2011;26:196–205.PubMed
110.
go back to reference Piccoli GB, Deagostini MC, Vigotti FN, Ferraresi M, Moro I, Consiglio V, et al. Which low-protein diet for which CKD patient? An observational, personalized approach. Nutrition. 2014;30:992–9.PubMed Piccoli GB, Deagostini MC, Vigotti FN, Ferraresi M, Moro I, Consiglio V, et al. Which low-protein diet for which CKD patient? An observational, personalized approach. Nutrition. 2014;30:992–9.PubMed
111.
go back to reference Piccoli GB, Ferraresi M, Deagostini MC, Vigotti FN, Consiglio V, Scognamiglio S, et al. Vegetarian low-protein diets supplemented with ketoanalogues: a niche for the few or an option for many? Nephrol Dial Transplant. 2013;28:2295–305.PubMed Piccoli GB, Ferraresi M, Deagostini MC, Vigotti FN, Consiglio V, Scognamiglio S, et al. Vegetarian low-protein diets supplemented with ketoanalogues: a niche for the few or an option for many? Nephrol Dial Transplant. 2013;28:2295–305.PubMed
112.
go back to reference Piccoli GB et al. Diet as a System. BMC Nephrology 2016; in press Piccoli GB et al. Diet as a System. BMC Nephrology 2016; in press
115.
go back to reference Nezu U, Kamiyama H, Kondo Y, Sakuma M, Morimoto T, Ueda S. Effect of low-protein diet on kidney function in diabetic nephropathy: meta-analysis of randomized controlled trials. BMJ Open. 2013;3(5). doi:10.1136/bmjopen-2013-002934. Nezu U, Kamiyama H, Kondo Y, Sakuma M, Morimoto T, Ueda S. Effect of low-protein diet on kidney function in diabetic nephropathy: meta-analysis of randomized controlled trials. BMJ Open. 2013;3(5). doi:10.​1136/​bmjopen-2013-002934.
116.
go back to reference Giordano M, Ciarambino T, Castellino P, Cataliotti A, Malatino L, Ferrara N, et al. Long-term effects of moderate protein diet on renal function and low-grade inflammation in older adults with type 2 diabetes and chronic kidney disease. Nutrition. 2014;30:1045–9.PubMed Giordano M, Ciarambino T, Castellino P, Cataliotti A, Malatino L, Ferrara N, et al. Long-term effects of moderate protein diet on renal function and low-grade inflammation in older adults with type 2 diabetes and chronic kidney disease. Nutrition. 2014;30:1045–9.PubMed
117.
go back to reference Whitham D. Nutrition for the prevention and treatment of chronic kidney Disease in Diabetes. Can J Diabetes. 2014;38:344–8.PubMed Whitham D. Nutrition for the prevention and treatment of chronic kidney Disease in Diabetes. Can J Diabetes. 2014;38:344–8.PubMed
118.
go back to reference Pan Y, Guo LL, Jim HM. Low-protein diet for diabetic nephropathy: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2008;88:660–6.PubMed Pan Y, Guo LL, Jim HM. Low-protein diet for diabetic nephropathy: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2008;88:660–6.PubMed
119.
go back to reference Koya D, Haneda M, Inomata S, Suzuki Y, Suzuki D, Makino H, et al. Low- Protein Diet Study Group. Long-term effect of modification of dietary protein intake on the progression of diabetic nephropathy: a randomized controlled trial. Diabetologia. 2009;52:2037–45.PubMedPubMedCentral Koya D, Haneda M, Inomata S, Suzuki Y, Suzuki D, Makino H, et al. Low- Protein Diet Study Group. Long-term effect of modification of dietary protein intake on the progression of diabetic nephropathy: a randomized controlled trial. Diabetologia. 2009;52:2037–45.PubMedPubMedCentral
120.
go back to reference Barsotti G, Cupisti A, Barsotti M, Sposini S, Palmieri D, Meola M, et al. Dietary treatment of diabetic nephropathy with chronic renal failure. Nephrol Dial Transpl. 1998;13:49–52. Barsotti G, Cupisti A, Barsotti M, Sposini S, Palmieri D, Meola M, et al. Dietary treatment of diabetic nephropathy with chronic renal failure. Nephrol Dial Transpl. 1998;13:49–52.
121.
go back to reference Appel LJ, Moore TJ, Obarzanek E, Vollmer WM, Svetkey LP, Sacks FM, et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N Engl J Med. 1997;336:1117–24.PubMed Appel LJ, Moore TJ, Obarzanek E, Vollmer WM, Svetkey LP, Sacks FM, et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N Engl J Med. 1997;336:1117–24.PubMed
122.
go back to reference Vogt TM, Appel LJ, Obarzanek E, Moore TJ, Vollmer WM, Svetkey LP, et al. Dietary Approaches to Stop Hypertension: rationale, design, and methods. DASH Collaborative Research Group. J Am Diet Assoc. 1999;99 Suppl 8:12–8. Vogt TM, Appel LJ, Obarzanek E, Moore TJ, Vollmer WM, Svetkey LP, et al. Dietary Approaches to Stop Hypertension: rationale, design, and methods. DASH Collaborative Research Group. J Am Diet Assoc. 1999;99 Suppl 8:12–8.
123.
go back to reference Feehally J, Baker F, Walls J. Dietary protein manipulation in experimental nephrotic syndrome. Nephron. 1988;50:247–52.PubMed Feehally J, Baker F, Walls J. Dietary protein manipulation in experimental nephrotic syndrome. Nephron. 1988;50:247–52.PubMed
124.
go back to reference Ginevri F, Ghiggeri GM, Oleggini R, Barbano G, Bertelli R, Candiano G, et al. Low-protein diet and xanthine-metabolising enzymes in adriamycin nephrosis. Nephrol Dial Transplant. 1990;1 Suppl 5:63–5. Ginevri F, Ghiggeri GM, Oleggini R, Barbano G, Bertelli R, Candiano G, et al. Low-protein diet and xanthine-metabolising enzymes in adriamycin nephrosis. Nephrol Dial Transplant. 1990;1 Suppl 5:63–5.
125.
go back to reference Peters H, Border WA, Noble NA. Angiotensin II blockade and low-protein diet produce additive therapeutic effects in experimental glomerulonephritis. Kidney Int. 2000;57:1493–501.PubMed Peters H, Border WA, Noble NA. Angiotensin II blockade and low-protein diet produce additive therapeutic effects in experimental glomerulonephritis. Kidney Int. 2000;57:1493–501.PubMed
126.
go back to reference Maroni BJ, Staffeld C, Young VR, Manatunga A, Tom K. Mechanisms permitting nephrotic patients to achieve nitrogen equilibrium with a protein-restricted diet. J Clin Invest. 1997;99:2479–87.PubMedPubMedCentral Maroni BJ, Staffeld C, Young VR, Manatunga A, Tom K. Mechanisms permitting nephrotic patients to achieve nitrogen equilibrium with a protein-restricted diet. J Clin Invest. 1997;99:2479–87.PubMedPubMedCentral
127.
go back to reference Giordano M, De Feo P, Lucidi P, DePascale E, Giordano G, Cirillo D, et al. Effects of dietary protein restriction on fibrinogen and albumin metabolism in nephrotic patients. Kidney Int. 2001;60:235–42.PubMed Giordano M, De Feo P, Lucidi P, DePascale E, Giordano G, Cirillo D, et al. Effects of dietary protein restriction on fibrinogen and albumin metabolism in nephrotic patients. Kidney Int. 2001;60:235–42.PubMed
128.
go back to reference Gansevoort RT, de Zeeuw D, de Jong PE. Additive antiproteinuric effect of ACE inhibition and a low-protein diet in human renal disease. Nephrol Dial Transplant. 1995;10:497–504.PubMed Gansevoort RT, de Zeeuw D, de Jong PE. Additive antiproteinuric effect of ACE inhibition and a low-protein diet in human renal disease. Nephrol Dial Transplant. 1995;10:497–504.PubMed
129.
go back to reference Ciavarella A, Di Mizio G, Stefoni S, Borgnino LC, Vannini P. Reduced albuminuria after dietary protein restriction in insulin-dependent diabetic patients with clinical nephropathy. Diabetes Care. 1987;10:407–13.PubMed Ciavarella A, Di Mizio G, Stefoni S, Borgnino LC, Vannini P. Reduced albuminuria after dietary protein restriction in insulin-dependent diabetic patients with clinical nephropathy. Diabetes Care. 1987;10:407–13.PubMed
130.
go back to reference Narita T, Koshimura J, Suzuki K, Murata M, Meguro H, Fujita H, et al. Effects of short-term glycemic control, low protein diet and administration of enalapril on renal hemodynamics and protein permselectivity in type 2 diabetic patients with microalbuminuria. Tohoku J Exp Med. 1999;189:117–33.PubMed Narita T, Koshimura J, Suzuki K, Murata M, Meguro H, Fujita H, et al. Effects of short-term glycemic control, low protein diet and administration of enalapril on renal hemodynamics and protein permselectivity in type 2 diabetic patients with microalbuminuria. Tohoku J Exp Med. 1999;189:117–33.PubMed
131.
go back to reference Walser M, Hill S, Tomalis EA. Treatment of nephrotic adults with a supplemented, very low-protein diet. Am J Kidney Dis. 1996;28:354–64.PubMed Walser M, Hill S, Tomalis EA. Treatment of nephrotic adults with a supplemented, very low-protein diet. Am J Kidney Dis. 1996;28:354–64.PubMed
132.
go back to reference Chauveau P, Combe C, Rigalleau V, Vendrely B, Aparicio M. Restricted protein diet is associated with decrease in proteinuria: consequences on the progression of renal failure. J Ren Nutr. 2007;17:250–7.PubMed Chauveau P, Combe C, Rigalleau V, Vendrely B, Aparicio M. Restricted protein diet is associated with decrease in proteinuria: consequences on the progression of renal failure. J Ren Nutr. 2007;17:250–7.PubMed
133.
go back to reference Mitch WE, Sapir DG. Evaluation of reduced dialysis frequency using nutritional therapy. Kidney Int. 1981;20:122–6.PubMed Mitch WE, Sapir DG. Evaluation of reduced dialysis frequency using nutritional therapy. Kidney Int. 1981;20:122–6.PubMed
134.
go back to reference Locatelli F, Andrulli S, Pontoriero G, Di Filippo S, Bigi MC. Integrated diet and dialysis programme. Nephrol Dial Transplant. 1998;6 Suppl 13:132–8. Locatelli F, Andrulli S, Pontoriero G, Di Filippo S, Bigi MC. Integrated diet and dialysis programme. Nephrol Dial Transplant. 1998;6 Suppl 13:132–8.
135.
go back to reference Kopple JD, Coburn JW. Metabolic studies of low protein diets in uremia. I. Nitrogen and potassium. Medicine (Baltimore). 1973;52:583–95. Kopple JD, Coburn JW. Metabolic studies of low protein diets in uremia. I. Nitrogen and potassium. Medicine (Baltimore). 1973;52:583–95.
136.
go back to reference Kopple JD, Coburn JW. Metabolic studies of low protein diets in uremia. II. Calcium, phosphorus and magnesium. Med (Baltimore). 1973;52:597–607. Kopple JD, Coburn JW. Metabolic studies of low protein diets in uremia. II. Calcium, phosphorus and magnesium. Med (Baltimore). 1973;52:597–607.
137.
go back to reference Kopple JD, Swendseid ME. Evidence that histidine is an essential amino acid in normal and chronically uremic man. J Clin Invest. 1975;55:881–91.PubMedPubMedCentral Kopple JD, Swendseid ME. Evidence that histidine is an essential amino acid in normal and chronically uremic man. J Clin Invest. 1975;55:881–91.PubMedPubMedCentral
138.
go back to reference Lai S, Molfino A, Coppola B, De Leo S, Tommasi V, Galani A, et al. Effect of personalized dietary intervention on nutritional, metabolic and vascular indices in patients with chronic kidney disease. Eur Rev Med Pharmacol Sci. 2015;19:3351–59.PubMed Lai S, Molfino A, Coppola B, De Leo S, Tommasi V, Galani A, et al. Effect of personalized dietary intervention on nutritional, metabolic and vascular indices in patients with chronic kidney disease. Eur Rev Med Pharmacol Sci. 2015;19:3351–59.PubMed
139.
140.
go back to reference Fouque D, Kalantar-Zadeh K, Kopple J, Cano N, Chauveau P, Cuppari L, et al. A proposed nomenclature and diagnostic criteria for protein-energy wasting in acute and chronic kidney disease. Kidney Int. 2008;73:391–8.PubMed Fouque D, Kalantar-Zadeh K, Kopple J, Cano N, Chauveau P, Cuppari L, et al. A proposed nomenclature and diagnostic criteria for protein-energy wasting in acute and chronic kidney disease. Kidney Int. 2008;73:391–8.PubMed
141.
go back to reference Obermayr RP, Temml C, Gutjahr G, Kainz A, Klauser-Braun R, Függer R, Oberbauer R. Body mass index modifies the risk of cardiovascular death in proteinuric chronic kidney disease. Nephrol Dial Transplant. 2009;24:2421–28.PubMed Obermayr RP, Temml C, Gutjahr G, Kainz A, Klauser-Braun R, Függer R, Oberbauer R. Body mass index modifies the risk of cardiovascular death in proteinuric chronic kidney disease. Nephrol Dial Transplant. 2009;24:2421–28.PubMed
142.
go back to reference Cano M, Camousseigt J, Carrasco F, Rojas P, Inostroza J, Pardo A, et al. Body composition assessment in patients with chronic renal failure. Nutr Hosp. 2010;25:682–7.PubMed Cano M, Camousseigt J, Carrasco F, Rojas P, Inostroza J, Pardo A, et al. Body composition assessment in patients with chronic renal failure. Nutr Hosp. 2010;25:682–7.PubMed
143.
go back to reference Pereira RA, Cordeiro AC, Avesani CM, Carrero JJ, Lindholm B, Amparo FC, et al. Sarcopenia in chronic kidney disease on conservative therapy: prevalence and association with mortality. Nephrol Dial Transplant. 2015;30:1718–25.PubMed Pereira RA, Cordeiro AC, Avesani CM, Carrero JJ, Lindholm B, Amparo FC, et al. Sarcopenia in chronic kidney disease on conservative therapy: prevalence and association with mortality. Nephrol Dial Transplant. 2015;30:1718–25.PubMed
144.
go back to reference Macdonald JH, Marcora SM, Jibani M, Roberts G, Kumwenda MJ, Glover R, et al. Bioelectrical impedance can be used to predict muscle mass and hence improve estimation of glomerular filtration rate in non-diabetic patients with chronic kidney disease. Nephrol Dial Transplant. 2006;21:3481–87.PubMed Macdonald JH, Marcora SM, Jibani M, Roberts G, Kumwenda MJ, Glover R, et al. Bioelectrical impedance can be used to predict muscle mass and hence improve estimation of glomerular filtration rate in non-diabetic patients with chronic kidney disease. Nephrol Dial Transplant. 2006;21:3481–87.PubMed
145.
go back to reference Erdogan E, Tutal E, Uyar ME, Bal Z, Demirci BG, Sayın B, Sezer S. Reliability of bioelectrical impedance analysis in the evaluation of the nutritional status of hemodialysis patients - a comparison with Mini Nutritional Assessment. Transplant Proc. 2013;45:3485–88.PubMed Erdogan E, Tutal E, Uyar ME, Bal Z, Demirci BG, Sayın B, Sezer S. Reliability of bioelectrical impedance analysis in the evaluation of the nutritional status of hemodialysis patients - a comparison with Mini Nutritional Assessment. Transplant Proc. 2013;45:3485–88.PubMed
146.
go back to reference Avesani CM, Draibe SA, Kamimura MA, Cendoroglo M, Pedrosa A, Castro ML, Cuppari L. Assessment of body composition by dual energy X-ray absorptiometry, skinfold thickness and creatinine kinetics in chronic kidney disease patients. Nephrol Dial Transplant. 2004;19:2289–95.PubMed Avesani CM, Draibe SA, Kamimura MA, Cendoroglo M, Pedrosa A, Castro ML, Cuppari L. Assessment of body composition by dual energy X-ray absorptiometry, skinfold thickness and creatinine kinetics in chronic kidney disease patients. Nephrol Dial Transplant. 2004;19:2289–95.PubMed
147.
go back to reference Bross R, Chandramohan G, Kovesdy CP, Oreopoulos A, Noori N, Golden S, et al. Comparing body composition assessment tests in long-term hemodialysis patients. Am J Kidney Dis. 2010;55:885–96.PubMedPubMedCentral Bross R, Chandramohan G, Kovesdy CP, Oreopoulos A, Noori N, Golden S, et al. Comparing body composition assessment tests in long-term hemodialysis patients. Am J Kidney Dis. 2010;55:885–96.PubMedPubMedCentral
148.
go back to reference Ikizler TA, Cano NJ, Franch H, Fouque D, Himmelfarb J, Kalantar-Zadeh K, et al. International Society of Renal Nutrition and Metabolism. Prevention and treatment of protein energy wasting in chronic kidney disease patients: a consensus statement by the International Society of Renal Nutrition and Metabolism. Kidney Int. 2013;84:1096–107.PubMed Ikizler TA, Cano NJ, Franch H, Fouque D, Himmelfarb J, Kalantar-Zadeh K, et al. International Society of Renal Nutrition and Metabolism. Prevention and treatment of protein energy wasting in chronic kidney disease patients: a consensus statement by the International Society of Renal Nutrition and Metabolism. Kidney Int. 2013;84:1096–107.PubMed
149.
go back to reference Clinical practice guidelines for nutrition in chronic renal failure. K/DOQI, National Kidney Foundation. Am J Kidney Dis. 2000;35 Suppl 6:1–140. Clinical practice guidelines for nutrition in chronic renal failure. K/DOQI, National Kidney Foundation. Am J Kidney Dis. 2000;35 Suppl 6:1–140.
150.
go back to reference Pagato SL, Appelhans BM. A call for the end to the diet debates. JAMA. 2013;310:687–8. Pagato SL, Appelhans BM. A call for the end to the diet debates. JAMA. 2013;310:687–8.
151.
go back to reference Upadhyay A, Earley A, Haynes SM, Uhlig K. Systemic review: Blood pressure target in chronic kidney disease and proteinuria as an effect modifier. Ann Intern Med. 2011;154:541–8.PubMed Upadhyay A, Earley A, Haynes SM, Uhlig K. Systemic review: Blood pressure target in chronic kidney disease and proteinuria as an effect modifier. Ann Intern Med. 2011;154:541–8.PubMed
152.
go back to reference Calderia D, Amaral T, David C, Sampaio C. Educational strategies to reduce serum phosphorus in hyperphosphatemic patients with chronic kidney disease: A systematic review with meta-analysis. J Ren Nutr. 2011;21:285–94. Calderia D, Amaral T, David C, Sampaio C. Educational strategies to reduce serum phosphorus in hyperphosphatemic patients with chronic kidney disease: A systematic review with meta-analysis. J Ren Nutr. 2011;21:285–94.
153.
go back to reference KDIGO. Clinical Practice Guideline for Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2013;3 Suppl 1:1–150. KDIGO. Clinical Practice Guideline for Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2013;3 Suppl 1:1–150.
154.
go back to reference D’Alessandro C, Piccoli GB, Cupisti A. The “phosphorus pyramid”: a visual tool for dietary phosphate management in dialysis and CKD patients. BMC Nephrol. 2015;20:16–9. D’Alessandro C, Piccoli GB, Cupisti A. The “phosphorus pyramid”: a visual tool for dietary phosphate management in dialysis and CKD patients. BMC Nephrol. 2015;20:16–9.
155.
156.
go back to reference Stuart-Shor E. A public health action plan to prevent heart disease and stroke: the mandate for prevention across the continuum of care and across the lifespan. J Cardiovasc Nurs. 2004;19:354–6.PubMed Stuart-Shor E. A public health action plan to prevent heart disease and stroke: the mandate for prevention across the continuum of care and across the lifespan. J Cardiovasc Nurs. 2004;19:354–6.PubMed
157.
go back to reference De Nicola L, Donfrancesco C, Minutolo R, Lo Noce C, Palmieri L, De Curtis A, et al. ANMCO-SIN Research Group. Prevalence and cardiovascular risk profile of chronic kidney disease in Italy: results of the 2008–12 National Health Examination Survey. Nephrol Dial Transplant. 2015;30:806–14.PubMed De Nicola L, Donfrancesco C, Minutolo R, Lo Noce C, Palmieri L, De Curtis A, et al. ANMCO-SIN Research Group. Prevalence and cardiovascular risk profile of chronic kidney disease in Italy: results of the 2008–12 National Health Examination Survey. Nephrol Dial Transplant. 2015;30:806–14.PubMed
158.
go back to reference Mennini FS, Russo S, Marcellusi A, Quintaliani G, Fouque D. Economic effects of treatment of chronic kidney disease with low-protein diet. J Ren Nutr. 2014;24:313–21.PubMed Mennini FS, Russo S, Marcellusi A, Quintaliani G, Fouque D. Economic effects of treatment of chronic kidney disease with low-protein diet. J Ren Nutr. 2014;24:313–21.PubMed
159.
go back to reference Quintaliani G. Socioeconomic aspects of dialysis treatment. G Ital Nefrol. 2008;25 Suppl 42:50–3. Quintaliani G. Socioeconomic aspects of dialysis treatment. G Ital Nefrol. 2008;25 Suppl 42:50–3.
160.
go back to reference Bowker TJ, Clayton TC, Ingham J, McLennan NR, Hobson HL, Pyke SD, et al. A British Cardiac Society survey of the potential for the secondary prevention of coronary disease: ASPIRE (Action on Secondary Prevention through Intervention to Reduce Events). Heart. 1996;75:334–42.PubMedPubMedCentral Bowker TJ, Clayton TC, Ingham J, McLennan NR, Hobson HL, Pyke SD, et al. A British Cardiac Society survey of the potential for the secondary prevention of coronary disease: ASPIRE (Action on Secondary Prevention through Intervention to Reduce Events). Heart. 1996;75:334–42.PubMedPubMedCentral
162.
go back to reference Costa E, Giardini A, Savin M, Menditto E, Lehane E, Laosa O, et al. Interventional tools to improve medication adherence: review of literature. Patient Prefer Adher. 2015;9:1303–14. Costa E, Giardini A, Savin M, Menditto E, Lehane E, Laosa O, et al. Interventional tools to improve medication adherence: review of literature. Patient Prefer Adher. 2015;9:1303–14.
163.
go back to reference Coleman K, Austin BT, Brach C, Wagner EH. Evidence on the Chronic Care Model in the new millennium. Health Aff. 2009;28:75–85. Coleman K, Austin BT, Brach C, Wagner EH. Evidence on the Chronic Care Model in the new millennium. Health Aff. 2009;28:75–85.
164.
go back to reference Quintaliani G, Cappelli G, Lodetti L, Manno C, Petrucci V, Spinelli C, et al. Chronic kidney disease certification process manual by the Italian Society of Nephrology (SIN): Part I: clinical care delivery and performance measurements and improvement. J Nephrol. 2009;22:423–38.PubMed Quintaliani G, Cappelli G, Lodetti L, Manno C, Petrucci V, Spinelli C, et al. Chronic kidney disease certification process manual by the Italian Society of Nephrology (SIN): Part I: clinical care delivery and performance measurements and improvement. J Nephrol. 2009;22:423–38.PubMed
Metadata
Title
Low-protein diets for chronic kidney disease patients: the Italian experience
Authors
Vincenzo Bellizzi
Adamasco Cupisti
Francesco Locatelli
Piergiorgio Bolasco
Giuliano Brunori
Giovanni Cancarini
Stefania Caria
Luca De Nicola
Biagio R. Di Iorio
Lucia Di Micco
Enrico Fiaccadori
Giacomo Garibotto
Marcora Mandreoli
Roberto Minutolo
Lamberto Oldrizzi
Giorgina B. Piccoli
Giuseppe Quintaliani
Domenico Santoro
Serena Torraca
Battista F. Viola
on behalf of the “Conservative Treatment of CKD” study group of the Italian Society of Nephrology
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2016
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-016-0280-0

Other articles of this Issue 1/2016

BMC Nephrology 1/2016 Go to the issue