Skip to main content
Top
Published in: BMC Nephrology 1/2015

Open Access 01-12-2015 | Research article

Partial nephrogenic diabetes insipidus caused by a novel AQP2 variation impairing trafficking of the aquaporin-2 water channel

Authors: Pia Dollerup, Troels Møller Thomsen, Lene N. Nejsum, Mia Færch, Martin Österbrand, Niels Gregersen, Søren Rittig, Jane H. Christensen, Thomas J. Corydon

Published in: BMC Nephrology | Issue 1/2015

Login to get access

Abstract

Background

Autosomal dominant inheritance of congenital nephrogenic diabetes insipidus (CNDI) is rare and usually caused by variations in the AQP2 gene. We have investigated the genetic and molecular background underlying symptoms of diabetes insipidus (DI) in a Swedish family with autosomal dominant inheritance of the condition.

Methods

The proband and her father were subjected to water deprivation testing and direct DNA sequencing of the coding regions of the AQP2 and AVP genes. Madin-Darby canine kidney (MDCK) cells stably expressing AQP2 variant proteins were generated by lentiviral gene delivery. Localization of AQP2 variant proteins in the cells under stimulated and unstimulated conditions was analyzed by means of immunostaining and confocal laser scanning microscopy. Intracellular trafficking of AQP2 variant proteins was studied using transient expression of mutant dynamin2-K44A-GFP protein and AQP2 variant protein phosphorylation levels were assessed by Western blotting analysis.

Results

Clinical and genetic data suggest that the proband and her father suffer from partial nephrogenic DI due to a variation (g.4807C > T) in the AQP2 gene. The variation results in substitution of arginine-254 to tryptophan (p.R254W) in AQP2. Analysis of MDCK cells stably expressing AQP2 variant proteins revealed disabled phosphorylation, impaired trafficking and intracellular accumulation of AQP2-R254W protein. Notably, blocking of the endocytic pathway demonstrated impairment of AQP2-R254W to reach the cell surface.

Conclusions

Partial CNDI in the Swedish family is caused by an AQP2 variation that seems to disable the encoded AQP2-R254W protein to reach the subapical vesicle population as well as impairing its phosphorylation at S256. The AQP2-R254W protein is thus unable to reach the plasma membrane to facilitate AVP mediated urine concentration.
Appendix
Available only for authorised users
Literature
1.
go back to reference Moeller HB, Rittig S, Fenton RA. Nephrogenic Diabetes Insipidus: Essential Insights into the Molecular Background and Potential Therapies for Treatment. Endocr Rev. 2013;34(2):278–301.CrossRefPubMedPubMedCentral Moeller HB, Rittig S, Fenton RA. Nephrogenic Diabetes Insipidus: Essential Insights into the Molecular Background and Potential Therapies for Treatment. Endocr Rev. 2013;34(2):278–301.CrossRefPubMedPubMedCentral
2.
go back to reference Nielsen S, Frokiaer J, Marples D, Kwon TH, Agre P, Knepper MA. Aquaporins in the kidney: from molecules to medicine. Physiol Rev. 2002;82(1):205–44.CrossRefPubMed Nielsen S, Frokiaer J, Marples D, Kwon TH, Agre P, Knepper MA. Aquaporins in the kidney: from molecules to medicine. Physiol Rev. 2002;82(1):205–44.CrossRefPubMed
3.
go back to reference Sun TX, Van Hoek A, Huang Y, Bouley R, McLaughlin M, Brown D. Aquaporin-2 localization in clathrin-coated pits: inhibition of endocytosis by dominant-negative dynamin. Am J Physiol Ren Physiol. 2002;282(6):F998–1011.CrossRef Sun TX, Van Hoek A, Huang Y, Bouley R, McLaughlin M, Brown D. Aquaporin-2 localization in clathrin-coated pits: inhibition of endocytosis by dominant-negative dynamin. Am J Physiol Ren Physiol. 2002;282(6):F998–1011.CrossRef
4.
go back to reference Gong H, Wang W, Kwon TH, Jonassen T, Frokiaer J, Nielsen S. Reduced renal expression of AQP2, p-AQP2 and AQP3 in haemorrhagic shock-induced acute renal failure. Nephrol Dial Transplant. 2003;18(12):2551–9.CrossRefPubMed Gong H, Wang W, Kwon TH, Jonassen T, Frokiaer J, Nielsen S. Reduced renal expression of AQP2, p-AQP2 and AQP3 in haemorrhagic shock-induced acute renal failure. Nephrol Dial Transplant. 2003;18(12):2551–9.CrossRefPubMed
5.
go back to reference Katsura T, Ausiello DA, Brown D. Direct demonstration of aquaporin-2 water channel recycling in stably transfected LLC-PK1 epithelial cells. Am J Physiol. 1996;270(3 Pt 2):F548–553.PubMed Katsura T, Ausiello DA, Brown D. Direct demonstration of aquaporin-2 water channel recycling in stably transfected LLC-PK1 epithelial cells. Am J Physiol. 1996;270(3 Pt 2):F548–553.PubMed
6.
go back to reference Katsura T, Gustafson CE, Ausiello DA, Brown D. Protein kinase A phosphorylation is involved in regulated exocytosis of aquaporin-2 in transfected LLC-PK1 cells. Am J Physiol. 1997;272(6 Pt 2):F817–822.PubMed Katsura T, Gustafson CE, Ausiello DA, Brown D. Protein kinase A phosphorylation is involved in regulated exocytosis of aquaporin-2 in transfected LLC-PK1 cells. Am J Physiol. 1997;272(6 Pt 2):F817–822.PubMed
7.
go back to reference Fushimi K, Sasaki S, Marumo F. Phosphorylation of serine 256 is required for cAMP-dependent regulatory exocytosis of the aquaporin-2 water channel. J Biol Chem. 1997;272(23):14800–4.CrossRefPubMed Fushimi K, Sasaki S, Marumo F. Phosphorylation of serine 256 is required for cAMP-dependent regulatory exocytosis of the aquaporin-2 water channel. J Biol Chem. 1997;272(23):14800–4.CrossRefPubMed
8.
go back to reference Lu H, Sun TX, Bouley R, Blackburn K, McLaughlin M, Brown D. Inhibition of endocytosis causes phosphorylation (S256)-independent plasma membrane accumulation of AQP2. Am J Physiol Ren Physiol. 2004;286(2):F233–243.CrossRef Lu H, Sun TX, Bouley R, Blackburn K, McLaughlin M, Brown D. Inhibition of endocytosis causes phosphorylation (S256)-independent plasma membrane accumulation of AQP2. Am J Physiol Ren Physiol. 2004;286(2):F233–243.CrossRef
9.
go back to reference van Balkom BW, Savelkoul PJ, Markovich D, Hofman E, Nielsen S, van der Sluijs P, et al. The role of putative phosphorylation sites in the targeting and shuttling of the aquaporin-2 water channel. J Biol Chem. 2002;277(44):41473–9.CrossRefPubMed van Balkom BW, Savelkoul PJ, Markovich D, Hofman E, Nielsen S, van der Sluijs P, et al. The role of putative phosphorylation sites in the targeting and shuttling of the aquaporin-2 water channel. J Biol Chem. 2002;277(44):41473–9.CrossRefPubMed
10.
go back to reference Kamsteeg EJ, Heijnen I, van Os CH, Deen PM. The subcellular localization of an aquaporin-2 tetramer depends on the stoichiometry of phosphorylated and nonphosphorylated monomers. J Cell Biol. 2000;151(4):919–30.CrossRefPubMedPubMedCentral Kamsteeg EJ, Heijnen I, van Os CH, Deen PM. The subcellular localization of an aquaporin-2 tetramer depends on the stoichiometry of phosphorylated and nonphosphorylated monomers. J Cell Biol. 2000;151(4):919–30.CrossRefPubMedPubMedCentral
11.
go back to reference Nejsum LN, Zelenina M, Aperia A, Frokiaer J, Nielsen S. Bidirectional regulation of AQP2 trafficking and recycling: involvement of AQP2-S256 phosphorylation. Am J Physiol Ren Physiol. 2005;288(5):F930–938.CrossRef Nejsum LN, Zelenina M, Aperia A, Frokiaer J, Nielsen S. Bidirectional regulation of AQP2 trafficking and recycling: involvement of AQP2-S256 phosphorylation. Am J Physiol Ren Physiol. 2005;288(5):F930–938.CrossRef
12.
go back to reference Kuwahara M, Iwai K, Ooeda T, Igarashi T, Ogawa E, Katsushima Y, et al. Three families with autosomal dominant nephrogenic diabetes insipidus caused by aquaporin-2 mutations in the C-terminus. Am J Hum Genet. 2001;69(4):738–48.CrossRefPubMedPubMedCentral Kuwahara M, Iwai K, Ooeda T, Igarashi T, Ogawa E, Katsushima Y, et al. Three families with autosomal dominant nephrogenic diabetes insipidus caused by aquaporin-2 mutations in the C-terminus. Am J Hum Genet. 2001;69(4):738–48.CrossRefPubMedPubMedCentral
13.
go back to reference Marr N, Bichet DG, Lonergan M, Arthus MF, Jeck N, Seyberth HW, et al. Heteroligomerization of an Aquaporin-2 mutant with wild-type Aquaporin-2 and their misrouting to late endosomes/lysosomes explains dominant nephrogenic diabetes insipidus. Hum Mol Genet. 2002;11(7):779–89.CrossRefPubMed Marr N, Bichet DG, Lonergan M, Arthus MF, Jeck N, Seyberth HW, et al. Heteroligomerization of an Aquaporin-2 mutant with wild-type Aquaporin-2 and their misrouting to late endosomes/lysosomes explains dominant nephrogenic diabetes insipidus. Hum Mol Genet. 2002;11(7):779–89.CrossRefPubMed
14.
go back to reference de Mattia F, Savelkoul PJ, Kamsteeg EJ, Konings IB, van der Sluijs P, Mallmann R, et al. Lack of arginine vasopressin-induced phosphorylation of aquaporin-2 mutant AQP2-R254L explains dominant nephrogenic diabetes insipidus. J Am Soc Nephrol. 2005;16(10):2872–80.CrossRefPubMed de Mattia F, Savelkoul PJ, Kamsteeg EJ, Konings IB, van der Sluijs P, Mallmann R, et al. Lack of arginine vasopressin-induced phosphorylation of aquaporin-2 mutant AQP2-R254L explains dominant nephrogenic diabetes insipidus. J Am Soc Nephrol. 2005;16(10):2872–80.CrossRefPubMed
15.
go back to reference Savelkoul PJ, De Mattia F, Li Y, Kamsteeg EJ, Konings IB, van der Sluijs P, et al. p.R254Q mutation in the aquaporin-2 water channel causing dominant nephrogenic diabetes insipidus is due to a lack of arginine vasopressin-induced phosphorylation. Hum Mutat. 2009;30(10):E891–903.CrossRefPubMed Savelkoul PJ, De Mattia F, Li Y, Kamsteeg EJ, Konings IB, van der Sluijs P, et al. p.R254Q mutation in the aquaporin-2 water channel causing dominant nephrogenic diabetes insipidus is due to a lack of arginine vasopressin-induced phosphorylation. Hum Mutat. 2009;30(10):E891–903.CrossRefPubMed
16.
go back to reference Kamsteeg EJ, Bichet DG, Konings IB, Nivet H, Lonergan M, Arthus MF, et al. Reversed polarized delivery of an aquaporin-2 mutant causes dominant nephrogenic diabetes insipidus. J Cell Biol. 2003;163(5):1099–109.CrossRefPubMedPubMedCentral Kamsteeg EJ, Bichet DG, Konings IB, Nivet H, Lonergan M, Arthus MF, et al. Reversed polarized delivery of an aquaporin-2 mutant causes dominant nephrogenic diabetes insipidus. J Cell Biol. 2003;163(5):1099–109.CrossRefPubMedPubMedCentral
17.
go back to reference Kamsteeg EJ, Wormhoudt TA, Rijss JP, van Os CH, Deen PM. An impaired routing of wild-type aquaporin-2 after tetramerization with an aquaporin-2 mutant explains dominant nephrogenic diabetes insipidus. EMBO J. 1999;18(9):2394–400.CrossRefPubMedPubMedCentral Kamsteeg EJ, Wormhoudt TA, Rijss JP, van Os CH, Deen PM. An impaired routing of wild-type aquaporin-2 after tetramerization with an aquaporin-2 mutant explains dominant nephrogenic diabetes insipidus. EMBO J. 1999;18(9):2394–400.CrossRefPubMedPubMedCentral
18.
go back to reference Mulders SM, Bichet DG, Rijss JP, Kamsteeg EJ, Arthus MF, Lonergan M, et al. An aquaporin-2 water channel mutant which causes autosomal dominant nephrogenic diabetes insipidus is retained in the Golgi complex. J Clin Invest. 1998;102(1):57–66.CrossRefPubMedPubMedCentral Mulders SM, Bichet DG, Rijss JP, Kamsteeg EJ, Arthus MF, Lonergan M, et al. An aquaporin-2 water channel mutant which causes autosomal dominant nephrogenic diabetes insipidus is retained in the Golgi complex. J Clin Invest. 1998;102(1):57–66.CrossRefPubMedPubMedCentral
19.
go back to reference Moldt B, Staunstrup NH, Jakobsen M, Yanez-Munoz RJ, Mikkelsen JG. Genomic insertion of lentiviral DNA circles directed by the yeast Flp recombinase. BMC Biotechnol. 2008;8:60.CrossRefPubMedPubMedCentral Moldt B, Staunstrup NH, Jakobsen M, Yanez-Munoz RJ, Mikkelsen JG. Genomic insertion of lentiviral DNA circles directed by the yeast Flp recombinase. BMC Biotechnol. 2008;8:60.CrossRefPubMedPubMedCentral
20.
go back to reference Askou AL, Aagaard L, Arsenijevic Y, Kostic C, Bek T, Jensen TG, et al. Multigenic lentiviral vectors for combined and tissue-specific expression of miRNA- and protein-based anti-angiogenic factors. Molecular Therapy – Methods and Clinical Development 2015;28(2):14064.CrossRef Askou AL, Aagaard L, Arsenijevic Y, Kostic C, Bek T, Jensen TG, et al. Multigenic lentiviral vectors for combined and tissue-specific expression of miRNA- and protein-based anti-angiogenic factors. Molecular Therapy – Methods and Clinical Development 2015;28(2):14064.CrossRef
22.
go back to reference Lombardi D, Soldati T, Riederer MA, Goda Y, Zerial M, Pfeffer SR. Rab9 functions in transport between late endosomes and the trans Golgi network. EMBO J. 1993;12(2):677–82.PubMedPubMedCentral Lombardi D, Soldati T, Riederer MA, Goda Y, Zerial M, Pfeffer SR. Rab9 functions in transport between late endosomes and the trans Golgi network. EMBO J. 1993;12(2):677–82.PubMedPubMedCentral
23.
go back to reference Corydon TJ, Hansen J, Bross P, Jensen TG. Down-regulation of Hsp60 expression by RNAi impairs folding of medium-chain acyl-CoA dehydrogenase wild-type and disease-associated proteins. Mol Genet Metab. 2005;85(4):260–70.CrossRefPubMed Corydon TJ, Hansen J, Bross P, Jensen TG. Down-regulation of Hsp60 expression by RNAi impairs folding of medium-chain acyl-CoA dehydrogenase wild-type and disease-associated proteins. Mol Genet Metab. 2005;85(4):260–70.CrossRefPubMed
24.
go back to reference Kuwahara M, Asai T, Terada Y, Sasaki S. The C-terminal tail of aquaporin-2 determines apical trafficking. Kidney Int. 2005;68(5):1999–2009.CrossRefPubMed Kuwahara M, Asai T, Terada Y, Sasaki S. The C-terminal tail of aquaporin-2 determines apical trafficking. Kidney Int. 2005;68(5):1999–2009.CrossRefPubMed
25.
go back to reference Babey M, Kopp P, Robertson GL. Familial forms of diabetes insipidus: clinical and molecular characteristics. Nat Rev Endocrinol. 2011;7(12):701–14.CrossRefPubMed Babey M, Kopp P, Robertson GL. Familial forms of diabetes insipidus: clinical and molecular characteristics. Nat Rev Endocrinol. 2011;7(12):701–14.CrossRefPubMed
26.
go back to reference Faerch M, Christensen JH, Corydon TJ, Kamperis K, de Zegher F, Gregersen N, et al. Partial nephrogenic diabetes insipidus caused by a novel mutation in the AVPR2 gene. Clin Endocrinol. 2008;68(3):395–403.CrossRef Faerch M, Christensen JH, Corydon TJ, Kamperis K, de Zegher F, Gregersen N, et al. Partial nephrogenic diabetes insipidus caused by a novel mutation in the AVPR2 gene. Clin Endocrinol. 2008;68(3):395–403.CrossRef
27.
go back to reference Brown D. The ins and outs of aquaporin-2 trafficking. Am J Physiol Ren Physiol. 2003;284(5):F893–901.CrossRef Brown D. The ins and outs of aquaporin-2 trafficking. Am J Physiol Ren Physiol. 2003;284(5):F893–901.CrossRef
28.
go back to reference Boone M, Deen PM. Congenital nephrogenic diabetes insipidus: what can we learn from mouse models? Exp Physiol. 2009;94(2):186–90.CrossRefPubMed Boone M, Deen PM. Congenital nephrogenic diabetes insipidus: what can we learn from mouse models? Exp Physiol. 2009;94(2):186–90.CrossRefPubMed
29.
go back to reference Morello JP, Salahpour A, Laperriere A, Bernier V, Arthus MF, Lonergan M, et al. Pharmacological chaperones rescue cell-surface expression and function of misfolded V2 vasopressin receptor mutants. J Clin Invest. 2000;105(7):887–95.CrossRefPubMedPubMedCentral Morello JP, Salahpour A, Laperriere A, Bernier V, Arthus MF, Lonergan M, et al. Pharmacological chaperones rescue cell-surface expression and function of misfolded V2 vasopressin receptor mutants. J Clin Invest. 2000;105(7):887–95.CrossRefPubMedPubMedCentral
30.
go back to reference Bernier V, Morello JP, Zarruk A, Debrand N, Salahpour A, Lonergan M, et al. Pharmacologic chaperones as a potential treatment for X-linked nephrogenic diabetes insipidus. J Am Soc Nephrol. 2006;17(1):232–43.CrossRefPubMed Bernier V, Morello JP, Zarruk A, Debrand N, Salahpour A, Lonergan M, et al. Pharmacologic chaperones as a potential treatment for X-linked nephrogenic diabetes insipidus. J Am Soc Nephrol. 2006;17(1):232–43.CrossRefPubMed
Metadata
Title
Partial nephrogenic diabetes insipidus caused by a novel AQP2 variation impairing trafficking of the aquaporin-2 water channel
Authors
Pia Dollerup
Troels Møller Thomsen
Lene N. Nejsum
Mia Færch
Martin Österbrand
Niels Gregersen
Søren Rittig
Jane H. Christensen
Thomas J. Corydon
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2015
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-015-0213-3

Other articles of this Issue 1/2015

BMC Nephrology 1/2015 Go to the issue