Skip to main content
Top
Published in: BMC Nephrology 1/2015

Open Access 01-12-2015 | Research article

Impact of nephrolithiasis on kidney function

Authors: Vaka K. Sigurjonsdottir, Hrafnhildur L. Runolfsdottir, Olafur S. Indridason, Runolfur Palsson, Vidar O. Edvardsson

Published in: BMC Nephrology | Issue 1/2015

Login to get access

Abstract

Background

Kidney stone disease has been associated with reduced kidney function and chronic kidney disease (CKD). The objective of the study was to examine kidney function, body mass index (BMI) and the prevalence of cardiovascular disease, hypertension and diabetes in recurrent kidney stone formers.

Methods

A cross-sectional, case-control study comparing measures of kidney function, BMI and comorbid conditions was conducted in 195 kidney stone patients aged 18 to 70 years with recurrent clinical stone events and 390 age- and gender-matched controls. Wilcoxon-Mann-Whitney, chi-square tests and analysis of covariance were used to compare serum creatinine (SCr) and estimated glomerular filtration rate (eGFR) between the groups.

Results

The median age of stone formers was 51 (range, 19–70) years and 108 (55 %) were males. Seventy patients (36 %) had experienced 2–4 clinical stone events, 41 (21 %) 5–10 episodes and 84 (43 %) more than 10. The median SCr was 75 (41–140) μmol/L in the stone formers and 64 (34–168) μmol/L in the control group (p < 0.001). The mean eGFR was 87 ± 20 and 104 ± 22 mL/min/1.73 m2 in the stone formers and controls, respectively (p < 0.001). After adjustment for body size and comorbid conditions, the difference in SCr and eGFR between cases and controls remained highly significant (p < 0.001). The prevalence of CKD was 9.3 % among stone formers compared with 1.3 % in the control group (P < 0.001). Hypertension and diabetes were significantly more prevalent among the cases that also had higher BMI than controls.

Conclusions

Recurrent kidney stone formers have a significantly lower level of kidney function and a markedly higher prevalence of CKD than age- and gender-matched control subjects. The observed deleterious effect of kidney stones on kidney function appears to be independent of comorbid conditions.
Literature
1.
go back to reference Pearle MS, Calhoun EA, Curhan GC. Urologic diseases in America project: urolithiasis. J Urol. 2005;173(3):848–57.CrossRefPubMed Pearle MS, Calhoun EA, Curhan GC. Urologic diseases in America project: urolithiasis. J Urol. 2005;173(3):848–57.CrossRefPubMed
2.
go back to reference Edvardsson VO, Indridason OS, Haraldsson G, Kjartansson O, Palsson R. Temporal trends in the incidence of kidney stone disease. Kidney Int. 2013;83(1):146–52.CrossRefPubMed Edvardsson VO, Indridason OS, Haraldsson G, Kjartansson O, Palsson R. Temporal trends in the incidence of kidney stone disease. Kidney Int. 2013;83(1):146–52.CrossRefPubMed
3.
go back to reference Rule AD, Bergstralh EJ, Melton 3rd LJ, Li X, Weaver AL, Lieske JC. Kidney stones and the risk for chronic kidney disease. Clin J Am Soc Nephrol. 2009;4(4):804–11.CrossRefPubMedPubMedCentral Rule AD, Bergstralh EJ, Melton 3rd LJ, Li X, Weaver AL, Lieske JC. Kidney stones and the risk for chronic kidney disease. Clin J Am Soc Nephrol. 2009;4(4):804–11.CrossRefPubMedPubMedCentral
4.
5.
go back to reference El-Zoghby ZM, Lieske JC, Foley RN, Bergstralh EJ, Li X, Melton 3rd LJ, et al. Urolithiasis and the risk of ESRD. Clin J Am Soc Nephrol. 2012;7(9):1409–15.CrossRefPubMedPubMedCentral El-Zoghby ZM, Lieske JC, Foley RN, Bergstralh EJ, Li X, Melton 3rd LJ, et al. Urolithiasis and the risk of ESRD. Clin J Am Soc Nephrol. 2012;7(9):1409–15.CrossRefPubMedPubMedCentral
6.
go back to reference Rule AD, Roger VL, Melton 3rd LJ, Bergstralh EJ, Li X, Peyser PA, et al. Kidney stones associate with increased risk for myocardial infarction. J Am Soc Nephrol. 2010;21(10):1641–4.CrossRefPubMedPubMedCentral Rule AD, Roger VL, Melton 3rd LJ, Bergstralh EJ, Li X, Peyser PA, et al. Kidney stones associate with increased risk for myocardial infarction. J Am Soc Nephrol. 2010;21(10):1641–4.CrossRefPubMedPubMedCentral
7.
go back to reference Kohjimoto Y, Sasaki Y, Iguchi M, Matsumura N, Inagaki T, Hara I. Association of metabolic syndrome traits and severity of kidney stones: results from a nationwide survey on urolithiasis in Japan. Am J Kidney Dis. 2013;61(6):923–9.CrossRefPubMed Kohjimoto Y, Sasaki Y, Iguchi M, Matsumura N, Inagaki T, Hara I. Association of metabolic syndrome traits and severity of kidney stones: results from a nationwide survey on urolithiasis in Japan. Am J Kidney Dis. 2013;61(6):923–9.CrossRefPubMed
8.
go back to reference West B, Luke A, Durazo-Arvizu RA, Cao G, Shoham D, Kramer H. Metabolic syndrome and self-reported history of kidney stones: the National Health and Nutrition Examination Survey (NHANES III) 1988–1994. Am J Kidney Dis. 2008;51(5):741–7.CrossRefPubMed West B, Luke A, Durazo-Arvizu RA, Cao G, Shoham D, Kramer H. Metabolic syndrome and self-reported history of kidney stones: the National Health and Nutrition Examination Survey (NHANES III) 1988–1994. Am J Kidney Dis. 2008;51(5):741–7.CrossRefPubMed
9.
go back to reference Taylor EN, Stampfer MJ, Curhan GC. Obesity, weight gain, and the risk of kidney stones. JAMA. 2005;293(4):455–62.CrossRefPubMed Taylor EN, Stampfer MJ, Curhan GC. Obesity, weight gain, and the risk of kidney stones. JAMA. 2005;293(4):455–62.CrossRefPubMed
10.
go back to reference Saucier NA, Sinha MK, Liang KV, Krambeck AE, Weaver AL, Bergstralh EJ, et al. Risk factors for CKD in persons with kidney stones: a case–control study in Olmsted County, Minnesota. Am J Kidney Dis. 2010;55(1):61–8.CrossRefPubMed Saucier NA, Sinha MK, Liang KV, Krambeck AE, Weaver AL, Bergstralh EJ, et al. Risk factors for CKD in persons with kidney stones: a case–control study in Olmsted County, Minnesota. Am J Kidney Dis. 2010;55(1):61–8.CrossRefPubMed
11.
go back to reference Edvardsson VO, Goldfarb DS, Lieske JC, Beara-Lasic L, Anglani F, Milliner DS, et al. Hereditary causes of kidney stones and chronic kidney disease. Pediatr Nephrol. 2013;28(10):1923–42.CrossRefPubMedPubMedCentral Edvardsson VO, Goldfarb DS, Lieske JC, Beara-Lasic L, Anglani F, Milliner DS, et al. Hereditary causes of kidney stones and chronic kidney disease. Pediatr Nephrol. 2013;28(10):1923–42.CrossRefPubMedPubMedCentral
12.
go back to reference Ingsathit A, Thakkinstian A, Chaiprasert A, Sangthawan P, Gojaseni P, Kiattisunthorn K, et al. Prevalence and risk factors of chronic kidney disease in the Thai adult population: Thai SEEK study. Nephrol Dial Transplant. 2010;25(5):1567–75.CrossRefPubMed Ingsathit A, Thakkinstian A, Chaiprasert A, Sangthawan P, Gojaseni P, Kiattisunthorn K, et al. Prevalence and risk factors of chronic kidney disease in the Thai adult population: Thai SEEK study. Nephrol Dial Transplant. 2010;25(5):1567–75.CrossRefPubMed
13.
go back to reference Vupputuri S, Soucie JM, McClellan W, Sandler DP. History of kidney stones as a possible risk factor for chronic kidney disease. Ann Epidemiol. 2004;14(3):222–8.CrossRefPubMed Vupputuri S, Soucie JM, McClellan W, Sandler DP. History of kidney stones as a possible risk factor for chronic kidney disease. Ann Epidemiol. 2004;14(3):222–8.CrossRefPubMed
14.
go back to reference Worcester EM, Parks JH, Evan AP, Coe FL. Renal function in patients with nephrolithiasis. J Urol. 2006;176(2):600–3.CrossRefPubMed Worcester EM, Parks JH, Evan AP, Coe FL. Renal function in patients with nephrolithiasis. J Urol. 2006;176(2):600–3.CrossRefPubMed
15.
go back to reference Gillen DL, Worcester EM, Coe FL. Decreased renal function among adults with a history of nephrolithiasis: a study of NHANES III. Kidney Int. 2005;67(2):685–90.CrossRefPubMed Gillen DL, Worcester EM, Coe FL. Decreased renal function among adults with a history of nephrolithiasis: a study of NHANES III. Kidney Int. 2005;67(2):685–90.CrossRefPubMed
16.
go back to reference Hippisley-Cox J, Coupland C. Predicting the risk of chronic kidney disease in men and women in England and Wales: prospective derivation and external validation of the Kidney Scores. BMC Fam Pract. 2010;11:49.CrossRefPubMedPubMedCentral Hippisley-Cox J, Coupland C. Predicting the risk of chronic kidney disease in men and women in England and Wales: prospective derivation and external validation of the Kidney Scores. BMC Fam Pract. 2010;11:49.CrossRefPubMedPubMedCentral
17.
go back to reference Steingrimsdottir L, Gunnarsson O, Indridason OS, Franzson L, Sigurdsson G. Relationship between serum parathyroid hormone levels, vitamin D sufficiency, and calcium intake. JAMA. 2005;294(18):2336–41.CrossRefPubMed Steingrimsdottir L, Gunnarsson O, Indridason OS, Franzson L, Sigurdsson G. Relationship between serum parathyroid hormone levels, vitamin D sufficiency, and calcium intake. JAMA. 2005;294(18):2336–41.CrossRefPubMed
18.
go back to reference Jungers P, Joly D, Barbey F, Choukroun G, Daudon M. ESRD caused by nephrolithiasis: prevalence, mechanisms, and prevention. Am J Kidney Dis. 2004;44(5):799–805.CrossRefPubMed Jungers P, Joly D, Barbey F, Choukroun G, Daudon M. ESRD caused by nephrolithiasis: prevalence, mechanisms, and prevention. Am J Kidney Dis. 2004;44(5):799–805.CrossRefPubMed
19.
go back to reference Coresh J, Selvin E, Stevens LA, Manzi J, Kusek JW, Eggers P, et al. Prevalence of chronic kidney disease in the United States. JAMA. 2007;298(17):2038–47.CrossRefPubMed Coresh J, Selvin E, Stevens LA, Manzi J, Kusek JW, Eggers P, et al. Prevalence of chronic kidney disease in the United States. JAMA. 2007;298(17):2038–47.CrossRefPubMed
21.
go back to reference Gaudio KM, Siegel NJ, Hayslett JP, Kashgarian M. Renal perfusion and intratubular pressure during ureteral occlusion in the rat. Am J Physiol. 1980;238(3):F205–9.PubMed Gaudio KM, Siegel NJ, Hayslett JP, Kashgarian M. Renal perfusion and intratubular pressure during ureteral occlusion in the rat. Am J Physiol. 1980;238(3):F205–9.PubMed
22.
go back to reference Evan A, Lingeman J, Coe FL, Worcester E. Randall’s plaque: pathogenesis and role in calcium oxalate nephrolithiasis. Kidney Int. 2006;69(8):1313–8.CrossRefPubMed Evan A, Lingeman J, Coe FL, Worcester E. Randall’s plaque: pathogenesis and role in calcium oxalate nephrolithiasis. Kidney Int. 2006;69(8):1313–8.CrossRefPubMed
23.
go back to reference Evan AP, Lingeman JE, Coe FL, Shao Y, Parks JH, Bledsoe SB, et al. Crystal-associated nephropathy in patients with brushite nephrolithiasis. Kidney Int. 2005;67(2):576–91.CrossRefPubMed Evan AP, Lingeman JE, Coe FL, Shao Y, Parks JH, Bledsoe SB, et al. Crystal-associated nephropathy in patients with brushite nephrolithiasis. Kidney Int. 2005;67(2):576–91.CrossRefPubMed
24.
go back to reference Knauf F, Asplin JR, Granja I, Schmidt IM, Moeckel GW, David RJ, et al. NALP3-mediated inflammation is a principal cause of progressive renal failure in oxalate nephropathy. Kidney Int. 2013;84(5):895–901.CrossRefPubMedPubMedCentral Knauf F, Asplin JR, Granja I, Schmidt IM, Moeckel GW, David RJ, et al. NALP3-mediated inflammation is a principal cause of progressive renal failure in oxalate nephropathy. Kidney Int. 2013;84(5):895–901.CrossRefPubMedPubMedCentral
25.
go back to reference Lieske JC. New insights regarding the interrelationship of obesity, diet, physical activity, and kidney stones. J Am Soc Nephrol. 2014;25(2):211–2.CrossRefPubMed Lieske JC. New insights regarding the interrelationship of obesity, diet, physical activity, and kidney stones. J Am Soc Nephrol. 2014;25(2):211–2.CrossRefPubMed
Metadata
Title
Impact of nephrolithiasis on kidney function
Authors
Vaka K. Sigurjonsdottir
Hrafnhildur L. Runolfsdottir
Olafur S. Indridason
Runolfur Palsson
Vidar O. Edvardsson
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2015
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-015-0126-1

Other articles of this Issue 1/2015

BMC Nephrology 1/2015 Go to the issue