Skip to main content
Top
Published in: BMC Nephrology 1/2015

Open Access 01-12-2015 | Research article

Effects of uremic solutes on reactive oxygen species in vitro model systems as a possibility of support the renal function management

Authors: Renata P Assis, Juliana FA Castro, Vânia O Gutierres, Carlos A Arcaro, Renata S Brotto, Olga MMF Oliveira, Amanda M Baviera, Iguatemy L Brunetti

Published in: BMC Nephrology | Issue 1/2015

Login to get access

Abstract

Background

In view of the prevalence of oxidative stress in chronic kidney disease (CKD) patients, the loss of low-molecular-weight biomolecules by hemodialysis and the antioxidant potential of some uremic solutes that accumulate in CKD, we used in vitro model systems to test the antioxidant potential of the following uremic solutes: uric acid, hippuric acid, p-cresol, phenol, methylguanidine, L-arginine, L-tyrosine, creatinine and urea.

Methods

The in vitro antioxidant efficiencies of the uremic solutes, isolated or in mixtures, were tested with the following assays: i) ABTS radical cation decolorization assay; ii) hypochlorous acid (HOCl/OCl) scavenging activity; iii) superoxide anion radical (O2•-) scavenging activity; iv) crocin bleaching assay (capture of peroxyl radical, ROO); v) hydrogen peroxide (H2O2) scavenging activity.

Results

Four of the tested uremic solutes (p-cresol, phenol, L-tyrosine, uric acid) were effective antioxidants and their IC50 were found in three model systems: ABTS•+, HOCl/OCl and crocin bleaching assay. In the 4-solutes mixtures, each one of the solute captured 12.5% for the IC50 of the mixture to ABTS•+ or HOCl/OCl, exhibiting a virtually exact additive effect. In the 2-solutes mixtures, for ROO capture, it was observed the need of more mass of uremic solutes to reach an IC50 value that was higher than the projected IC50, obtained from the IC50 of single solutes (25% of each, in the binary mixtures) in the same assay. In model systems for O2•- and H2O2, none of the uremic solutes showed scavenging activity.

Conclusions

The use of the IC50 as an analytical tool to prepare and analyze mixtures allows the determination of their scavenging capacities and may be useful for the assessment of the antioxidant status of biological samples under conditions of altered levels of the endogenous antioxidant network and/or in the employment and monitoring of exogenous antioxidant therapy.
Literature
1.
go back to reference Meenakshi Sundaram SP, Nagarajan S, Devi AJM. Chronic kidney disease—effect of oxidative stress. Chin J Biol. 2014;2014:1–6.CrossRef Meenakshi Sundaram SP, Nagarajan S, Devi AJM. Chronic kidney disease—effect of oxidative stress. Chin J Biol. 2014;2014:1–6.CrossRef
2.
go back to reference Small DM, Coombes JS, Bennett N, Johnson DW, Gobe GC. Oxidative stress, anti-oxidant therapies and chronic kidney disease. Nephrol. 2012;17:311–21.CrossRef Small DM, Coombes JS, Bennett N, Johnson DW, Gobe GC. Oxidative stress, anti-oxidant therapies and chronic kidney disease. Nephrol. 2012;17:311–21.CrossRef
3.
go back to reference Massy ZA, Stenvinkel P, Drueke TB. The role of oxidative stress in chronic kidney disease. Semin Dial. 2009;22:405–8.CrossRefPubMed Massy ZA, Stenvinkel P, Drueke TB. The role of oxidative stress in chronic kidney disease. Semin Dial. 2009;22:405–8.CrossRefPubMed
4.
go back to reference Malyszko J. Mechanism of endothelial dysfunction in chronic kidney disease. Clin Chim Acta. 2010;411:1412–20.CrossRefPubMed Malyszko J. Mechanism of endothelial dysfunction in chronic kidney disease. Clin Chim Acta. 2010;411:1412–20.CrossRefPubMed
5.
go back to reference Satoh M. Endothelial dysfunction as an underlying pathophysiological condition of chronic kidney disease. Clin Exp Nephrol. 2012;16:518–21.CrossRefPubMed Satoh M. Endothelial dysfunction as an underlying pathophysiological condition of chronic kidney disease. Clin Exp Nephrol. 2012;16:518–21.CrossRefPubMed
6.
go back to reference Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;23:1296–305.CrossRef Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;23:1296–305.CrossRef
7.
go back to reference Schiffrin EL, Lipman ML, Mann JF. Chronic kidney disease: effects on the cardiovascular system. Circulation. 2007;116:85–97.CrossRefPubMed Schiffrin EL, Lipman ML, Mann JF. Chronic kidney disease: effects on the cardiovascular system. Circulation. 2007;116:85–97.CrossRefPubMed
8.
go back to reference Vanholder R, Baurmeister U, Brunet P, Cohen G, Glorieux G, Jankowski J, et al. A bench to beside view of uremic toxins. J Am Soc Nephrol. 2008;19:863–70.CrossRefPubMed Vanholder R, Baurmeister U, Brunet P, Cohen G, Glorieux G, Jankowski J, et al. A bench to beside view of uremic toxins. J Am Soc Nephrol. 2008;19:863–70.CrossRefPubMed
10.
go back to reference Kadkhodaee M, Hemmati M, Zahmatkesh M, Ghaznavi R, Mirershadi F, Mahdavi Mazde M, et al. Assessment of plasma antioxidant status in hemodialysis patients. Ther Apher Dial. 2008;12:147–51.CrossRefPubMed Kadkhodaee M, Hemmati M, Zahmatkesh M, Ghaznavi R, Mirershadi F, Mahdavi Mazde M, et al. Assessment of plasma antioxidant status in hemodialysis patients. Ther Apher Dial. 2008;12:147–51.CrossRefPubMed
11.
go back to reference Wratten ML, Galaris D, Tetta C, Sevanian A. Evolution of oxidative stress and inflammation during hemodialysis and their contribution to cardiovascular disease. Antioxid Redox Signal. 2002;4:935–44.CrossRefPubMed Wratten ML, Galaris D, Tetta C, Sevanian A. Evolution of oxidative stress and inflammation during hemodialysis and their contribution to cardiovascular disease. Antioxid Redox Signal. 2002;4:935–44.CrossRefPubMed
12.
go back to reference Glorieux G, Neirynck N, Veys N, Vanholder R. Dialysis water and fluid purity: more than endotoxin. Nephrol Dial Transplant. 2012;27:4010–21.CrossRefPubMed Glorieux G, Neirynck N, Veys N, Vanholder R. Dialysis water and fluid purity: more than endotoxin. Nephrol Dial Transplant. 2012;27:4010–21.CrossRefPubMed
13.
go back to reference Chen MF, Chang CL, Liou SY. Increase in resting levels of superoxide anion in the whole blood of uremic patients on chronic hemodialysis. Blood Purif. 1998;16:290–300.CrossRefPubMed Chen MF, Chang CL, Liou SY. Increase in resting levels of superoxide anion in the whole blood of uremic patients on chronic hemodialysis. Blood Purif. 1998;16:290–300.CrossRefPubMed
14.
go back to reference Ujhelyi L, Balla G, Jeney V, Varga Z, Nagy E, Vercellotti GM, et al. Hemodialysis reduces inhibitory effect of plasma ultrafiltrate on LDL oxidation and subsequent endothelial reactions. Kidney Int. 2006;69:144–51.CrossRefPubMed Ujhelyi L, Balla G, Jeney V, Varga Z, Nagy E, Vercellotti GM, et al. Hemodialysis reduces inhibitory effect of plasma ultrafiltrate on LDL oxidation and subsequent endothelial reactions. Kidney Int. 2006;69:144–51.CrossRefPubMed
16.
go back to reference Mayer B, Zitta S, Greilberger J, Holzer H, Reibnegger G, Hermetter A, et al. Effect of hemodialysis on the antioxidative properties of serum. Bioch Biophys Acta. 2003;1638:267–72. Mayer B, Zitta S, Greilberger J, Holzer H, Reibnegger G, Hermetter A, et al. Effect of hemodialysis on the antioxidative properties of serum. Bioch Biophys Acta. 2003;1638:267–72.
17.
go back to reference Chen T, Liou S, Chang Y. Chemiluminescent analysis of plasma antioxidant capacity in uremic patients undergoing hemodialysis. Ren Fail. 2008;30:843–7.CrossRefPubMed Chen T, Liou S, Chang Y. Chemiluminescent analysis of plasma antioxidant capacity in uremic patients undergoing hemodialysis. Ren Fail. 2008;30:843–7.CrossRefPubMed
18.
go back to reference Gerardi GM, Usberti M, Martini G, Albertini A, Sugherini L, Pompella A, et al. Plasma total antioxidant capacity in hemodialyzed patients and its relationships to other biomarkers of oxidative stress and lipid peroxidation. Clin Chem. 2002;40:104–10. Gerardi GM, Usberti M, Martini G, Albertini A, Sugherini L, Pompella A, et al. Plasma total antioxidant capacity in hemodialyzed patients and its relationships to other biomarkers of oxidative stress and lipid peroxidation. Clin Chem. 2002;40:104–10.
19.
20.
go back to reference Cao G, Prior RL. Comparison of different analytical methods for assessing total antioxidant capacity of human serum. Clin Chem. 1998;44:1309–15.PubMed Cao G, Prior RL. Comparison of different analytical methods for assessing total antioxidant capacity of human serum. Clin Chem. 1998;44:1309–15.PubMed
21.
go back to reference Halliwell B, Gutteridge JMC. The chemistry of free radicals and related ‘reactive species’. In: Halliwell B, Gutteridge JMC, editors. Free radicals in biology and medicine. New York: Oxford; 2010. p. 30–78. Halliwell B, Gutteridge JMC. The chemistry of free radicals and related ‘reactive species’. In: Halliwell B, Gutteridge JMC, editors. Free radicals in biology and medicine. New York: Oxford; 2010. p. 30–78.
22.
go back to reference Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying improved ABTS radical cation decolorization assay. Free Rad Biol Med. 1999;26:1231–7.CrossRefPubMed Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying improved ABTS radical cation decolorization assay. Free Rad Biol Med. 1999;26:1231–7.CrossRefPubMed
23.
go back to reference Kakkar P, Das B, Viswanayhan PN. A modified spectrophotometric assay of superoxide dismutase. J Biochem Biophys. 1984;21:130–2. Kakkar P, Das B, Viswanayhan PN. A modified spectrophotometric assay of superoxide dismutase. J Biochem Biophys. 1984;21:130–2.
24.
go back to reference Hazra B, Biswas S, Mandal N. Antioxidant and free radical scavenging activity of Spondias pinnata. BMC Complement Altern Med. 2008;8:1–10.CrossRef Hazra B, Biswas S, Mandal N. Antioxidant and free radical scavenging activity of Spondias pinnata. BMC Complement Altern Med. 2008;8:1–10.CrossRef
25.
go back to reference Kettle AJ, Winterbourn CC. Assays for the chlorination activity of myeloperoxidase. Methods Enzymol. 1994;233:233:502–12.CrossRefPubMed Kettle AJ, Winterbourn CC. Assays for the chlorination activity of myeloperoxidase. Methods Enzymol. 1994;233:233:502–12.CrossRefPubMed
26.
go back to reference Dypbukt JM, Bishop C, Brooks WM, Thong B, Eriksson H, Kettle AJ. A sensitive and selective assay for chloramine production by myeloperoxidase. Free Rad Biol Med. 2005;39:1468–77.CrossRefPubMed Dypbukt JM, Bishop C, Brooks WM, Thong B, Eriksson H, Kettle AJ. A sensitive and selective assay for chloramine production by myeloperoxidase. Free Rad Biol Med. 2005;39:1468–77.CrossRefPubMed
27.
go back to reference Zgliczynski JM, Stelmaszynska T, Domanska J, Ostrowski W. Chloramines as intermediates of oxidation reaction of amino acids by myeloperoxidase. Biochem Biophys Acta. 1971;235:419–24.PubMed Zgliczynski JM, Stelmaszynska T, Domanska J, Ostrowski W. Chloramines as intermediates of oxidation reaction of amino acids by myeloperoxidase. Biochem Biophys Acta. 1971;235:419–24.PubMed
28.
go back to reference Tubaro F, Ghiselli A, Rapuzzi P, Maiorino M, Ursini F. Analysis of plasma antioxidant capacity by competition kinetics. Free Rad Biol Med. 1998;24:1228–34.CrossRefPubMed Tubaro F, Ghiselli A, Rapuzzi P, Maiorino M, Ursini F. Analysis of plasma antioxidant capacity by competition kinetics. Free Rad Biol Med. 1998;24:1228–34.CrossRefPubMed
29.
go back to reference Thomas EL, Grisham MB, Jefferson MM. Preparation and characterization of chloramines. Methods Enzymol. 1986;132:569–85.CrossRefPubMed Thomas EL, Grisham MB, Jefferson MM. Preparation and characterization of chloramines. Methods Enzymol. 1986;132:569–85.CrossRefPubMed
30.
go back to reference Ching T, Jong J, Bast A. A method for screening hypochlorous acid scavengers by inhibition of the oxidation of 5-thio-2-nitrobenzoic acid: application to antiasthmatic drugs. Anal Biochem. 1994;218:377–81.CrossRefPubMed Ching T, Jong J, Bast A. A method for screening hypochlorous acid scavengers by inhibition of the oxidation of 5-thio-2-nitrobenzoic acid: application to antiasthmatic drugs. Anal Biochem. 1994;218:377–81.CrossRefPubMed
32.
go back to reference Brestel EP. Co-oxidation of luminol and hydrogen peroxide. Implications for neutrophil chemiluminecence. Biochem Biophys Res Commun. 1985;126:482–8.CrossRefPubMed Brestel EP. Co-oxidation of luminol and hydrogen peroxide. Implications for neutrophil chemiluminecence. Biochem Biophys Res Commun. 1985;126:482–8.CrossRefPubMed
33.
go back to reference Vanholder R, Glorieux G, Lameire N. European Uremic Toxin Work Group. Uraemic toxins and cardiovascular disease. Nephrol Dial Transplant. 2003;18:463–6.CrossRefPubMed Vanholder R, Glorieux G, Lameire N. European Uremic Toxin Work Group. Uraemic toxins and cardiovascular disease. Nephrol Dial Transplant. 2003;18:463–6.CrossRefPubMed
34.
go back to reference Nieto FJ, Iribarren C, Gross MD, Comstock GW, Cutler RG. Uric acid and serum antioxidant capacity: a reaction to atherosclerosis? Atherosclerosis. 2000;148:131–9.CrossRefPubMed Nieto FJ, Iribarren C, Gross MD, Comstock GW, Cutler RG. Uric acid and serum antioxidant capacity: a reaction to atherosclerosis? Atherosclerosis. 2000;148:131–9.CrossRefPubMed
35.
go back to reference Miyamoto Y, Iwao Y, Tasaki Y, Sato K, Ishima Y, Watanabe H, et al. The uremic solute indoxyl sulfate acts as an antioxidant against superoxide anion radicals under normal-physiological conditions. FEBS Lett. 2010;584:2816–20.CrossRefPubMed Miyamoto Y, Iwao Y, Tasaki Y, Sato K, Ishima Y, Watanabe H, et al. The uremic solute indoxyl sulfate acts as an antioxidant against superoxide anion radicals under normal-physiological conditions. FEBS Lett. 2010;584:2816–20.CrossRefPubMed
36.
go back to reference Budavari S, O’Neil MJ, Smith A, Heckelman PE. The Merck Index (an encyclopedia of chemicals, drugs, and biologicals). 14th ed. New Jersey: Merck; 2006. Budavari S, O’Neil MJ, Smith A, Heckelman PE. The Merck Index (an encyclopedia of chemicals, drugs, and biologicals). 14th ed. New Jersey: Merck; 2006.
37.
go back to reference Lussignoli S, Fraccaroli M, Andrioli G, Brocco G, Bellavite P. A microplate based colorimetric assay of the total peroxyl radical trapping capability of human plasma. Anal Biochem. 1999;269:38–44.CrossRefPubMed Lussignoli S, Fraccaroli M, Andrioli G, Brocco G, Bellavite P. A microplate based colorimetric assay of the total peroxyl radical trapping capability of human plasma. Anal Biochem. 1999;269:38–44.CrossRefPubMed
38.
go back to reference Mello LD, Kubota LT. Biosensors as a tool for the antioxidant status evaluation. Talanta. 2007;72:335–48.CrossRefPubMed Mello LD, Kubota LT. Biosensors as a tool for the antioxidant status evaluation. Talanta. 2007;72:335–48.CrossRefPubMed
39.
go back to reference Vellosa JCR, Khalil NM, Gutierres VO, Santos VAFFM, Furlan M, Brunetti IL, et al. Salacia campestris root bark extract: peroxidase inhibition, antioxidant and antiradical profile. Braz J Pharm Sci. 2009;45:99–107.CrossRef Vellosa JCR, Khalil NM, Gutierres VO, Santos VAFFM, Furlan M, Brunetti IL, et al. Salacia campestris root bark extract: peroxidase inhibition, antioxidant and antiradical profile. Braz J Pharm Sci. 2009;45:99–107.CrossRef
40.
go back to reference Gülçin I. Comparison of in vitro antioxidant and antiradical activities of L- tyrosine and L-Dopa. Amino Acids. 2007;32:431–8.CrossRefPubMed Gülçin I. Comparison of in vitro antioxidant and antiradical activities of L- tyrosine and L-Dopa. Amino Acids. 2007;32:431–8.CrossRefPubMed
41.
go back to reference Chung Y, Wang H, El-Shazly M, Leu YL, Cheng MC, Lee CL, et al. Antioxidant and tyrosinase inhibitory constituents from a desugared sugar cane extract, a byproduct of sugar production. J Agric Food Chem. 2011;59:9219–25.CrossRefPubMed Chung Y, Wang H, El-Shazly M, Leu YL, Cheng MC, Lee CL, et al. Antioxidant and tyrosinase inhibitory constituents from a desugared sugar cane extract, a byproduct of sugar production. J Agric Food Chem. 2011;59:9219–25.CrossRefPubMed
42.
go back to reference Bianchi PD, Barp J, Thomé FS, Belló-Klein A. Efeito de uma sessão de hemodiálise sobre o estresse oxidativo sistêmico de pacientes renais crônicos terminais. J Bras Nefrol. 2009;31:175–82. Bianchi PD, Barp J, Thomé FS, Belló-Klein A. Efeito de uma sessão de hemodiálise sobre o estresse oxidativo sistêmico de pacientes renais crônicos terminais. J Bras Nefrol. 2009;31:175–82.
43.
go back to reference Rutgers A, Heeringa P, Kooman JP, Van der Sande FM, Tervaert WC. Peripheral blood myeloperoxidase activity increases during hemodialysis. Kidney Int. 2003;64:760–2.CrossRefPubMed Rutgers A, Heeringa P, Kooman JP, Van der Sande FM, Tervaert WC. Peripheral blood myeloperoxidase activity increases during hemodialysis. Kidney Int. 2003;64:760–2.CrossRefPubMed
44.
go back to reference Capeillere-Blandin C, Gausson V, Nguyen AT, Descamps-Latscha B, Drueke T, Witko-Sarsat V. Respective role of uraemic toxins and myeloperoxidase in the uraemic state. Nephrol Dial Transplant. 2006;21:1555–63.CrossRefPubMed Capeillere-Blandin C, Gausson V, Nguyen AT, Descamps-Latscha B, Drueke T, Witko-Sarsat V. Respective role of uraemic toxins and myeloperoxidase in the uraemic state. Nephrol Dial Transplant. 2006;21:1555–63.CrossRefPubMed
45.
go back to reference Marsche G, Frank S, Hrzenjak A, Holzer M, Dirnberger S, Wadsack C, et al. Plasma-advanced oxidation protein products are potent high-density lipoprotein receptor antagonists in vivo. Circ Res. 2009;104:750–7.CrossRefPubMedPubMedCentral Marsche G, Frank S, Hrzenjak A, Holzer M, Dirnberger S, Wadsack C, et al. Plasma-advanced oxidation protein products are potent high-density lipoprotein receptor antagonists in vivo. Circ Res. 2009;104:750–7.CrossRefPubMedPubMedCentral
46.
go back to reference Kitabayashi C, Naruko T, Sugioka K, Yunoki K, Nakagawa M, Inaba M, et al. Positive association between plasma levels of oxidized low-density lipoprotein and myeloperoxidase after hemodialysis in patients with diabetic end-stage renal disease. Hemodial Int. 2013;17:557–67.CrossRefPubMed Kitabayashi C, Naruko T, Sugioka K, Yunoki K, Nakagawa M, Inaba M, et al. Positive association between plasma levels of oxidized low-density lipoprotein and myeloperoxidase after hemodialysis in patients with diabetic end-stage renal disease. Hemodial Int. 2013;17:557–67.CrossRefPubMed
47.
go back to reference Cadenas E, Davies KJ. Mitochondrial free radical generation, oxidative stress, and aging. Free Rad Biol Med. 2000;29:222–30.CrossRefPubMed Cadenas E, Davies KJ. Mitochondrial free radical generation, oxidative stress, and aging. Free Rad Biol Med. 2000;29:222–30.CrossRefPubMed
48.
go back to reference Schmidt RJ, Yokota S, Tracy TS, Sorkin MI, Baylis C. Nitric oxide production is low in end-stage renal disease patients on peritoneal dialysis. Am J Physiol. 1999;276:794–7. Schmidt RJ, Yokota S, Tracy TS, Sorkin MI, Baylis C. Nitric oxide production is low in end-stage renal disease patients on peritoneal dialysis. Am J Physiol. 1999;276:794–7.
50.
go back to reference Barreiros ALBS, David JM, David JP. Estresse oxidativo: relação entre geração de espécies reativas e defesa do organismo. Quim Nova. 2006;29:113–23.CrossRef Barreiros ALBS, David JM, David JP. Estresse oxidativo: relação entre geração de espécies reativas e defesa do organismo. Quim Nova. 2006;29:113–23.CrossRef
51.
go back to reference Ak T, Gülçin I. Antioxidant and radical scavenging properties of curcumin. Chem Biol Interact. 2008;174:27–37.CrossRefPubMed Ak T, Gülçin I. Antioxidant and radical scavenging properties of curcumin. Chem Biol Interact. 2008;174:27–37.CrossRefPubMed
52.
go back to reference Ujhelyi L, Balla G, Jeney V, Varga Z, Nagy E, Vercellotti GM, et al. Response to p-Cresol for better or worse: But what are we measuring? Kidney Int. 2006;70:232–3.CrossRef Ujhelyi L, Balla G, Jeney V, Varga Z, Nagy E, Vercellotti GM, et al. Response to p-Cresol for better or worse: But what are we measuring? Kidney Int. 2006;70:232–3.CrossRef
53.
go back to reference Sautin YY, Johnson RJ. Uric acid: the oxidant – antioxidant paradox. Nucleos Nucleot Nucl. 2008;27:608–19.CrossRef Sautin YY, Johnson RJ. Uric acid: the oxidant – antioxidant paradox. Nucleos Nucleot Nucl. 2008;27:608–19.CrossRef
54.
go back to reference Praschberger M, Hermann M, Wanner J, Jirovetz L, Exner M, Kapiotis S, et al. The uremic toxin indoxyl sulfate acts as a pro- or antioxidant on LDL oxidation. Free Radic Res. 2014;6:641–8.CrossRef Praschberger M, Hermann M, Wanner J, Jirovetz L, Exner M, Kapiotis S, et al. The uremic toxin indoxyl sulfate acts as a pro- or antioxidant on LDL oxidation. Free Radic Res. 2014;6:641–8.CrossRef
55.
go back to reference Llesuy SF, Milei J, Flecha BSG, Boveris A. Myocardial damage induced by doxorubicins: hydroperoxide-initiated chemiluminescence and morphology. Free Radic Biol Med. 1990;8:259–64.CrossRefPubMed Llesuy SF, Milei J, Flecha BSG, Boveris A. Myocardial damage induced by doxorubicins: hydroperoxide-initiated chemiluminescence and morphology. Free Radic Biol Med. 1990;8:259–64.CrossRefPubMed
56.
go back to reference Gonzalez Flecha B, Llesuy S, Boveris A. Hydroperoxide-initiated chemiluminescence: an assay for oxidative stress in biopsies of heart, liver, and muscle. Free Radic Biol Med. 1991;10:93–100.CrossRefPubMed Gonzalez Flecha B, Llesuy S, Boveris A. Hydroperoxide-initiated chemiluminescence: an assay for oxidative stress in biopsies of heart, liver, and muscle. Free Radic Biol Med. 1991;10:93–100.CrossRefPubMed
57.
go back to reference Noguer M, Cerezo AB, Moyá ML, Troncoso AM, García-Parrilla MC. Synergism effect between phenolic metabolites and endogenous antioxidants in terms of antioxidant activity. ACES. 2014;4:258–65.CrossRef Noguer M, Cerezo AB, Moyá ML, Troncoso AM, García-Parrilla MC. Synergism effect between phenolic metabolites and endogenous antioxidants in terms of antioxidant activity. ACES. 2014;4:258–65.CrossRef
58.
go back to reference Ordoudi SA, Tsimidou MZ. Crocin Bleaching Assay (CBA) in structure-radical scavenging activity studies of selected phenolic compounds. J Agric Food Chem. 2006;54:9347–56.CrossRefPubMed Ordoudi SA, Tsimidou MZ. Crocin Bleaching Assay (CBA) in structure-radical scavenging activity studies of selected phenolic compounds. J Agric Food Chem. 2006;54:9347–56.CrossRefPubMed
59.
go back to reference MacNnamara PJ, Lalka D, Gibaldi M. Endogenous accumulation products and serum protein binding in uremia. J Lab Clin Med. 1981;98:730–40. MacNnamara PJ, Lalka D, Gibaldi M. Endogenous accumulation products and serum protein binding in uremia. J Lab Clin Med. 1981;98:730–40.
60.
go back to reference Simenhoff ML, Asatoor AM, Milne MD, Zilva JF. Retention of aliphatic amines in uraemia. Clin Sci. 1963;25:65–77.PubMed Simenhoff ML, Asatoor AM, Milne MD, Zilva JF. Retention of aliphatic amines in uraemia. Clin Sci. 1963;25:65–77.PubMed
61.
go back to reference Vanholder RC, Desmet RV, Ringoir SM. Assessment of urea and other uremic markers for quantification of dialysis efficacy. Clin Chem. 1992;38:1429–36.PubMed Vanholder RC, Desmet RV, Ringoir SM. Assessment of urea and other uremic markers for quantification of dialysis efficacy. Clin Chem. 1992;38:1429–36.PubMed
62.
go back to reference Roberts WL, McMillin GA, Burtis CA, Bruns DE. Appendix. In: Burtis CA, Ashwood ER, Bruns DE, editors. Tietz textbook of clinical chemistry and molecular diagnostics. St. Louis, Missouri: Elsevier; 2006.p. 2252-2302. Roberts WL, McMillin GA, Burtis CA, Bruns DE. Appendix. In: Burtis CA, Ashwood ER, Bruns DE, editors. Tietz textbook of clinical chemistry and molecular diagnostics. St. Louis, Missouri: Elsevier; 2006.p. 2252-2302.
63.
go back to reference Niwa T, Maeda K, Ohki T, Saito A, Kobayashi K. Gas chromatographic-mass spectrometric analysis for phenolin uremis serum. Clin Chim Acta. 1981;110:51–7.CrossRefPubMed Niwa T, Maeda K, Ohki T, Saito A, Kobayashi K. Gas chromatographic-mass spectrometric analysis for phenolin uremis serum. Clin Chim Acta. 1981;110:51–7.CrossRefPubMed
64.
go back to reference Matsumoto M, Kishikawa H, Mori A. Guanidino compounds in the sera of uremic patients and in the sera and brain of experimental uremic rabbits. Biochem Med. 1976;16:1–8.CrossRefPubMed Matsumoto M, Kishikawa H, Mori A. Guanidino compounds in the sera of uremic patients and in the sera and brain of experimental uremic rabbits. Biochem Med. 1976;16:1–8.CrossRefPubMed
65.
go back to reference Farrel PC, Gotch FA, Peters JH, Berridge Jr BJ, Lam M. Binding of hippurate in normal plasma and in uremic plasma pre - and post-dialysis. Nephron. 1978;20:40.CrossRef Farrel PC, Gotch FA, Peters JH, Berridge Jr BJ, Lam M. Binding of hippurate in normal plasma and in uremic plasma pre - and post-dialysis. Nephron. 1978;20:40.CrossRef
66.
go back to reference Eksborg S, Persson BA, Allgen LG, Bergström J, Zimmerman L, Fürst P. A seletive method for determination of methil-guanidine in biological fluids. Its application in normal subjects and uremic patients. Clin Chim Acta. 1978;82:141–50.CrossRefPubMed Eksborg S, Persson BA, Allgen LG, Bergström J, Zimmerman L, Fürst P. A seletive method for determination of methil-guanidine in biological fluids. Its application in normal subjects and uremic patients. Clin Chim Acta. 1978;82:141–50.CrossRefPubMed
67.
68.
go back to reference Schoots AC, Peeters JAG, Gerlag PGG. Effect of hemodialysis on serum concentration of HPLC-analyzed accumulating solutes in uremia. Nephron. 1989;53:208–17.CrossRefPubMed Schoots AC, Peeters JAG, Gerlag PGG. Effect of hemodialysis on serum concentration of HPLC-analyzed accumulating solutes in uremia. Nephron. 1989;53:208–17.CrossRefPubMed
69.
70.
go back to reference Vanholder R, Hoenich N, Ringoir S. Adequacy studies of fistula single-needle dialysis. Am J Kidney Dis. 1987;10:417–26.CrossRefPubMed Vanholder R, Hoenich N, Ringoir S. Adequacy studies of fistula single-needle dialysis. Am J Kidney Dis. 1987;10:417–26.CrossRefPubMed
Metadata
Title
Effects of uremic solutes on reactive oxygen species in vitro model systems as a possibility of support the renal function management
Authors
Renata P Assis
Juliana FA Castro
Vânia O Gutierres
Carlos A Arcaro
Renata S Brotto
Olga MMF Oliveira
Amanda M Baviera
Iguatemy L Brunetti
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2015
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-015-0029-1

Other articles of this Issue 1/2015

BMC Nephrology 1/2015 Go to the issue