Skip to main content
Top
Published in: BMC Nephrology 1/2015

Open Access 01-12-2015 | Research article

A potential kidney - bone axis involved in the rapid minute-to-minute regulation of plasma Ca2+

Authors: Anders Nordholm, Maria L Mace, Eva Gravesen, Klaus Olgaard, Ewa Lewin

Published in: BMC Nephrology | Issue 1/2015

Login to get access

Abstract

Background

Understanding the regulation of mineral homeostasis and function of the skeleton as buffer for Calcium and Phosphate has regained new interest with introduction of the syndrome “Chronic Kidney Disease-Mineral and Bone Disorder”(CKD-MBD). The very rapid minute-to-minute regulation of plasma-Ca2+ (p-Ca2+) takes place via an exchange mechanism of Ca2+ between plasma and bone. A labile Ca storage pool exists on bone surfaces storing excess or supplying Ca when blood Ca is lowered. Aim was to examine minute-to-minute regulation of p-Ca2+ in the very early phase of acute uremia, as induced by total bilateral nephrectomy and to study the effect of absence of kidneys on the rapid recovery of p-Ca2+ from a brief induction of acute hypocalcemia.

Methods

The rapid regulation of p-Ca2+ was examined in sham-operated rats, acute nephrectomized rats(NX), acute thyroparathyrectomized(TPTX) rats and NX-TPTX rats.

Results

The results clearly showed that p-Ca2+ falls rapidly and significantly very early after acute NX, from 1.23 ± 0.02 to 1.06 ± 0.04 mM (p < 0.001). Further hypocalcemia was induced by a 30 min iv infusion of EGTA. Control groups had saline. After discontinuing EGTA a rapid increase in p-Ca2+ took place, but with a lower level in NX rats (p < 0.05). NX-TPTX model excluded potential effect of accumulation of Calcitonin and C-terminal PTH, both having potential hypocalcemic actions. Acute TPTX resulted in hypercalcemia, 1.44 ± 0.02 mM and less in NX-TPTX rats,1.41 ± 0.02 mM (p < 0.05). Recovery of p-Ca2+ from hypocalcemia resulted in lower levels in NX-TPTX than in TPTX rats, 1.20 ± 0.02 vs.1.30 ± 0.02 (p < 0.05) demonstrating that absence of kidneys significantly affected the rapid regulation of p-Ca2+ independent of PTH, C-PTH and CT.

Conclusions

P-Ca2+ on a minute-to-minute basis is influenced by presence of kidneys. Hypocalcemia developed rapidly in acute uremia. Levels of p-Ca2+, obtained during recovery from hypocalcemia resulted in lower levels in acutely nephrectomized rats. This indicates that kidneys are of significant importance for the ‘set-point’ of p-Ca2+ on bone surface, independently of PTH and calcitonin. Our results point toward existence of an as yet unknown factor/mechanism, which mediates the axis between kidney and bone, and which is involved in the very rapid regulation of p-Ca2+.
Literature
1.
go back to reference Brown EM. The extracellular Ca2 + −sensing receptor: central mediator of systemic calcium homeostasis. Annu Rev Nutr. 2000;20:507–33.CrossRefPubMed Brown EM. The extracellular Ca2 + −sensing receptor: central mediator of systemic calcium homeostasis. Annu Rev Nutr. 2000;20:507–33.CrossRefPubMed
2.
go back to reference Brown EM. Role of the calcium-sensing receptor in extracellular calcium homeostasis. Best Pract Res Clin Endocrinol Metab. 2013;27:333–43.CrossRefPubMed Brown EM. Role of the calcium-sensing receptor in extracellular calcium homeostasis. Best Pract Res Clin Endocrinol Metab. 2013;27:333–43.CrossRefPubMed
3.
go back to reference Markowitz M, Rotkin L, Rosen JF. Circadian rhythms of blood minerals in humans. Science. 1981;213:672–4.CrossRefPubMed Markowitz M, Rotkin L, Rosen JF. Circadian rhythms of blood minerals in humans. Science. 1981;213:672–4.CrossRefPubMed
4.
go back to reference Suzuki Y, Bürzle M, Hedinger MA. Physiology and pathology of calcium and magnesium transport. In: Olgaard K, Salusky IB, Silver J, editors. The Spectrum of Mineral and Bone Disorders in Chronic Kidney Disease. Oxford: Oxford University Press; 2010. p. 369–77.CrossRef Suzuki Y, Bürzle M, Hedinger MA. Physiology and pathology of calcium and magnesium transport. In: Olgaard K, Salusky IB, Silver J, editors. The Spectrum of Mineral and Bone Disorders in Chronic Kidney Disease. Oxford: Oxford University Press; 2010. p. 369–77.CrossRef
5.
go back to reference Trivedi H, Szabo A, Zhao S, Cantor T, Raff H: Circadian variation of mineral and bone parameters in end-stage renal disease. J Nephrol 2014. Aug 20; doi:10.1007/s40620-014-0124-6 [Epub ahead of print]. Trivedi H, Szabo A, Zhao S, Cantor T, Raff H: Circadian variation of mineral and bone parameters in end-stage renal disease. J Nephrol 2014. Aug 20; doi:10.1007/s40620-014-0124-6 [Epub ahead of print].
6.
go back to reference Kronenberg HM, Lee K, Lanske B, Segre GV. Parathyroid hormone-related protein and Indian hedgehog control the pace of cartilage differentiation. J Endocrinol. 1997;154(Suppl):S39–45.PubMed Kronenberg HM, Lee K, Lanske B, Segre GV. Parathyroid hormone-related protein and Indian hedgehog control the pace of cartilage differentiation. J Endocrinol. 1997;154(Suppl):S39–45.PubMed
7.
go back to reference Kurokawa K. The kidney and calcium homeostasis. Kidney Int Suppl. 1994;44:S97–105.PubMed Kurokawa K. The kidney and calcium homeostasis. Kidney Int Suppl. 1994;44:S97–105.PubMed
8.
go back to reference Brown EM. Extracellular Ca2+ sensing, regulation of parathyroid cell function, and role of Ca2+ and other ions as extracellular (first) messengers. Physiol Rev. 1991;71:371–411.PubMed Brown EM. Extracellular Ca2+ sensing, regulation of parathyroid cell function, and role of Ca2+ and other ions as extracellular (first) messengers. Physiol Rev. 1991;71:371–411.PubMed
9.
go back to reference Wang W, Lewin E, Olgaard K. 1,25(OH)2D3 only affects long-term levels of plasma Ca2+ but not the rapid minute-to-minute plasma Ca2+ homeostasis in the rat. Steroids. 1999;64:726–34.CrossRefPubMed Wang W, Lewin E, Olgaard K. 1,25(OH)2D3 only affects long-term levels of plasma Ca2+ but not the rapid minute-to-minute plasma Ca2+ homeostasis in the rat. Steroids. 1999;64:726–34.CrossRefPubMed
10.
go back to reference Wang W, Lewin E, Olgaard K. Parathyroid hormone is not a key hormone in the rapid minute-to-minute regulation of plasma Ca2+ homeostasis in rats. Eur J Clin Invest. 1999;29:309–20.CrossRefPubMed Wang W, Lewin E, Olgaard K. Parathyroid hormone is not a key hormone in the rapid minute-to-minute regulation of plasma Ca2+ homeostasis in rats. Eur J Clin Invest. 1999;29:309–20.CrossRefPubMed
11.
go back to reference Lewin E, Wang W, Olgaard K. Rapid recovery of plasma ionized calcium after acute induction of hypocalcaemia in parathyroidectomized and nephrectomized rats. Nephrol Dial Transplant. 1999;14:604–9.CrossRefPubMed Lewin E, Wang W, Olgaard K. Rapid recovery of plasma ionized calcium after acute induction of hypocalcaemia in parathyroidectomized and nephrectomized rats. Nephrol Dial Transplant. 1999;14:604–9.CrossRefPubMed
12.
go back to reference Wang W, Lewin E, Olgaard K. Role of calcitonin in the rapid minute-to-minute regulation of plasma Ca2+ homeostasis in the rat. Eur J Clin Invest. 2002;32:674–81.CrossRefPubMed Wang W, Lewin E, Olgaard K. Role of calcitonin in the rapid minute-to-minute regulation of plasma Ca2+ homeostasis in the rat. Eur J Clin Invest. 2002;32:674–81.CrossRefPubMed
13.
go back to reference Kurokawa K. How is plasma calcium held constant? Milieu interieur of calcium. Kidney Int. 1996;49:1760–4.CrossRefPubMed Kurokawa K. How is plasma calcium held constant? Milieu interieur of calcium. Kidney Int. 1996;49:1760–4.CrossRefPubMed
14.
15.
go back to reference Peacock M, Robertson WG, Nordin BE. Relation between serum and urinary calcium with particular reference to parathyroid activity. Lancet. 1969;1:384–6.CrossRefPubMed Peacock M, Robertson WG, Nordin BE. Relation between serum and urinary calcium with particular reference to parathyroid activity. Lancet. 1969;1:384–6.CrossRefPubMed
16.
go back to reference Riccardi D, Lee WS, Lee K, Segre GV, Brown EM, Hebert SC. Localization of the extracellular Ca(2+)-sensing receptor and PTH/PTHrP receptor in rat kidney. Am J Physiol. 1996;271:F951–6.PubMed Riccardi D, Lee WS, Lee K, Segre GV, Brown EM, Hebert SC. Localization of the extracellular Ca(2+)-sensing receptor and PTH/PTHrP receptor in rat kidney. Am J Physiol. 1996;271:F951–6.PubMed
17.
go back to reference Kumar R, Schaefer J, Grande JP, Roche PC. Immunolocalization of calcitriol receptor, 24-hydroxylase cytochrome P-450, and calbindin D28k in human kidney. Am J Physiol. 1994;266:F477–85.PubMed Kumar R, Schaefer J, Grande JP, Roche PC. Immunolocalization of calcitriol receptor, 24-hydroxylase cytochrome P-450, and calbindin D28k in human kidney. Am J Physiol. 1994;266:F477–85.PubMed
18.
go back to reference Iida K, Taniguchi S, Kurokawa K. Distribution of 1,25-dihydroxyvitamin D3 receptor and 25-hydroxyvitamin D3-24-hydroxylase mRNA expression along rat nephron segments. Biochem Biophys Res Commun. 1993;194:659–64.CrossRefPubMed Iida K, Taniguchi S, Kurokawa K. Distribution of 1,25-dihydroxyvitamin D3 receptor and 25-hydroxyvitamin D3-24-hydroxylase mRNA expression along rat nephron segments. Biochem Biophys Res Commun. 1993;194:659–64.CrossRefPubMed
19.
go back to reference Hemmingsen C, Staun M, Lewin E, Nielsen PK, Olgaard K. Effect of parathyroid hormone on renal calbindin-D28k. J Bone Miner Res. 1996;11:1086–93.CrossRefPubMed Hemmingsen C, Staun M, Lewin E, Nielsen PK, Olgaard K. Effect of parathyroid hormone on renal calbindin-D28k. J Bone Miner Res. 1996;11:1086–93.CrossRefPubMed
20.
go back to reference Chen WC, Chang SC, Wu TH, Yang WC, Tarng DC. Hypercalcemia in a renal transplant recipient suffering with Pneumocystis carinii pneumonia. Am J Kidney Dis. 2002;39:E8.CrossRefPubMed Chen WC, Chang SC, Wu TH, Yang WC, Tarng DC. Hypercalcemia in a renal transplant recipient suffering with Pneumocystis carinii pneumonia. Am J Kidney Dis. 2002;39:E8.CrossRefPubMed
21.
go back to reference Andrukhova O, Smorodchenko A, Egerbacher M, Streicher C, Zeitz U, Goetz R, et al. FGF23 promotes renal calcium reabsorption through the TRPV5 channel. EMBO J. 2014;33:229–46.PubMedPubMedCentral Andrukhova O, Smorodchenko A, Egerbacher M, Streicher C, Zeitz U, Goetz R, et al. FGF23 promotes renal calcium reabsorption through the TRPV5 channel. EMBO J. 2014;33:229–46.PubMedPubMedCentral
22.
go back to reference Parfitt AM. Calcium Homeostasis. In: Born GVR, Cuatrecasas P, Herken H, Melmon K, editors. Handbook of Experimental Pharmacology. Berlin: Springer-Verlag; 1993. p. 1–65. Parfitt AM. Calcium Homeostasis. In: Born GVR, Cuatrecasas P, Herken H, Melmon K, editors. Handbook of Experimental Pharmacology. Berlin: Springer-Verlag; 1993. p. 1–65.
23.
go back to reference Brown EM. Physiology and pathophysiology of the extracellular calcium-sensing receptor. Am J Med. 1999;106:238–53.CrossRefPubMed Brown EM. Physiology and pathophysiology of the extracellular calcium-sensing receptor. Am J Med. 1999;106:238–53.CrossRefPubMed
24.
go back to reference Lewin E. Parathyroid hormone regulation in normal and uremic rats. Dan Med Bull. 2004;51:184–206.PubMed Lewin E. Parathyroid hormone regulation in normal and uremic rats. Dan Med Bull. 2004;51:184–206.PubMed
25.
go back to reference Wang W, Lewin E, Olgaard K. Rate-dependency of calcitonin secretion in response to increased plasma Ca2+. Eur J Clin Invest. 2002;32:669–73.CrossRefPubMed Wang W, Lewin E, Olgaard K. Rate-dependency of calcitonin secretion in response to increased plasma Ca2+. Eur J Clin Invest. 2002;32:669–73.CrossRefPubMed
26.
go back to reference Parfitt AM. Misconceptions (3): calcium leaves bone only by resorption and enters only by formation. Bone. 2003;33:259–63.CrossRefPubMed Parfitt AM. Misconceptions (3): calcium leaves bone only by resorption and enters only by formation. Bone. 2003;33:259–63.CrossRefPubMed
27.
go back to reference Moe S, Drueke T, Cunningham J, Goodman W, Martin K, Olgaard K, et al. Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2006;69:1945–53.CrossRefPubMed Moe S, Drueke T, Cunningham J, Goodman W, Martin K, Olgaard K, et al. Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2006;69:1945–53.CrossRefPubMed
28.
go back to reference Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351:1296–305.CrossRefPubMed Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351:1296–305.CrossRefPubMed
29.
go back to reference Christov M, Waikar SS, Pereira RC, Havasi A, Leaf DE, Goltzman D, et al. Plasma FGF23 levels increase rapidly after acute kidney injury. Kidney Int. 2013;84:776–85.CrossRefPubMedPubMedCentral Christov M, Waikar SS, Pereira RC, Havasi A, Leaf DE, Goltzman D, et al. Plasma FGF23 levels increase rapidly after acute kidney injury. Kidney Int. 2013;84:776–85.CrossRefPubMedPubMedCentral
30.
go back to reference Lavi-Moshayoff V, Wasserman G, Meir T, Silver J, Naveh-Many T. PTH increases FGF23 gene expression and mediates the high-FGF23 levels of experimental kidney failure: a bone parathyroid feedback loop. Am J Physiol Renal Physiol. 2010;299:F882–9.CrossRefPubMed Lavi-Moshayoff V, Wasserman G, Meir T, Silver J, Naveh-Many T. PTH increases FGF23 gene expression and mediates the high-FGF23 levels of experimental kidney failure: a bone parathyroid feedback loop. Am J Physiol Renal Physiol. 2010;299:F882–9.CrossRefPubMed
31.
go back to reference Lewin E, Colstrup H, Pless V, Ladefoged J, Olgaard K. A model of reversible uremia employing isogenic kidney transplantation in the rat. Reversibility of secondary hyperparathyroidism. Scand J Urol Nephrol. 1993;27:115–20.CrossRefPubMed Lewin E, Colstrup H, Pless V, Ladefoged J, Olgaard K. A model of reversible uremia employing isogenic kidney transplantation in the rat. Reversibility of secondary hyperparathyroidism. Scand J Urol Nephrol. 1993;27:115–20.CrossRefPubMed
32.
go back to reference Ardaillou R, Sizonenko P, Meyrier A, Vallee G, Beaugas C. Metabolic clearance rate of radioiodinated human calcitonin in man. J Clin Invest. 1970;49:2345–52.CrossRefPubMedPubMedCentral Ardaillou R, Sizonenko P, Meyrier A, Vallee G, Beaugas C. Metabolic clearance rate of radioiodinated human calcitonin in man. J Clin Invest. 1970;49:2345–52.CrossRefPubMedPubMedCentral
33.
go back to reference Huan J, Olgaard K, Nielsen LB, Lewin E. Parathyroid hormone 7–84 induces hypocalcemia and inhibits the parathyroid hormone 1–84 secretory response to hypocalcemia in rats with intact parathyroid glands. J Am Soc Nephrol. 2006;17:1923–30.CrossRefPubMed Huan J, Olgaard K, Nielsen LB, Lewin E. Parathyroid hormone 7–84 induces hypocalcemia and inhibits the parathyroid hormone 1–84 secretory response to hypocalcemia in rats with intact parathyroid glands. J Am Soc Nephrol. 2006;17:1923–30.CrossRefPubMed
34.
go back to reference Llach F, Felsenfeld AJ, Haussler MR. The pathophysiology of altered calcium metabolism in rhabdomyolysis-induced acute renal failure. Interactions of parathyroid hormone, 25-hydroxycholecalciferol, and 1,25-dihydroxycholecalciferol. N Engl J Med. 1981;305:117–23.CrossRefPubMed Llach F, Felsenfeld AJ, Haussler MR. The pathophysiology of altered calcium metabolism in rhabdomyolysis-induced acute renal failure. Interactions of parathyroid hormone, 25-hydroxycholecalciferol, and 1,25-dihydroxycholecalciferol. N Engl J Med. 1981;305:117–23.CrossRefPubMed
35.
go back to reference Saha H, Mustonen J, Pietila K, Pasternack A. Metabolism of calcium and vitamin D3 in patients with acute tubulointerstitial nephritis: a study of 41 patients with nephropathia epidemica. Nephron. 1993;63:159–63.CrossRefPubMed Saha H, Mustonen J, Pietila K, Pasternack A. Metabolism of calcium and vitamin D3 in patients with acute tubulointerstitial nephritis: a study of 41 patients with nephropathia epidemica. Nephron. 1993;63:159–63.CrossRefPubMed
36.
go back to reference Brandi L, Egfjord M, Olgaard K. Pharmacokinetics of 1,25(OH)(2)D(3) and 1alpha(OH)D(3) in normal and uraemic men. Nephrol Dial Transplant. 2002;17:829–42.CrossRefPubMed Brandi L, Egfjord M, Olgaard K. Pharmacokinetics of 1,25(OH)(2)D(3) and 1alpha(OH)D(3) in normal and uraemic men. Nephrol Dial Transplant. 2002;17:829–42.CrossRefPubMed
37.
go back to reference Hendy GN, Kronenberg HM, Potts Jr JT, Rich A. Nucleotide sequence of cloned cDNAs encoding human preproparathyroid hormone. PROC NATL ACAD SCI U S A. 1981;78:7365–9.CrossRefPubMedPubMedCentral Hendy GN, Kronenberg HM, Potts Jr JT, Rich A. Nucleotide sequence of cloned cDNAs encoding human preproparathyroid hormone. PROC NATL ACAD SCI U S A. 1981;78:7365–9.CrossRefPubMedPubMedCentral
38.
go back to reference Heinrich G, Kronenberg HM, Potts Jr JT, Habener JF. Gene encoding parathyroid hormone. Nucleotide sequence of the rat gene and deduced amino acid sequence of rat preproparathyroid hormone. J Biol Chem. 1984;259:3320–9.PubMed Heinrich G, Kronenberg HM, Potts Jr JT, Habener JF. Gene encoding parathyroid hormone. Nucleotide sequence of the rat gene and deduced amino acid sequence of rat preproparathyroid hormone. J Biol Chem. 1984;259:3320–9.PubMed
39.
go back to reference Schmelzer HJ, Gross G, Widera G, Mayer H. Nucleotide sequence of a full-length cDNA clone encoding preproparathyroid hormone from pig and rat. Nucleic Acids Res. 1987;15:6740.CrossRefPubMedPubMedCentral Schmelzer HJ, Gross G, Widera G, Mayer H. Nucleotide sequence of a full-length cDNA clone encoding preproparathyroid hormone from pig and rat. Nucleic Acids Res. 1987;15:6740.CrossRefPubMedPubMedCentral
40.
go back to reference Murray TM, Rao LG, Divieti P, Bringhurst FR. Parathyroid hormone secretion and action: evidence for discrete receptors for the carboxyl-terminal region and related biological actions of carboxyl- terminal ligands. Endocr Rev. 2005;26:78–113.CrossRefPubMed Murray TM, Rao LG, Divieti P, Bringhurst FR. Parathyroid hormone secretion and action: evidence for discrete receptors for the carboxyl-terminal region and related biological actions of carboxyl- terminal ligands. Endocr Rev. 2005;26:78–113.CrossRefPubMed
41.
go back to reference D’Amour P, Segre GV, Roth SI, Potts Jr JT. Analysis of parathyroid hormone and its fragments in rat tissues: chemical identification and microscopical localization. J Clin Invest. 1979;63:89–98.CrossRefPubMedPubMedCentral D’Amour P, Segre GV, Roth SI, Potts Jr JT. Analysis of parathyroid hormone and its fragments in rat tissues: chemical identification and microscopical localization. J Clin Invest. 1979;63:89–98.CrossRefPubMedPubMedCentral
42.
go back to reference Bringhurst FR, Segre GV, Lampman GW, Potts Jr JT. Metabolism of parathyroid hormone by Kupffer cells: analysis by reverse-phase high-performance liquid chromatography. Biochemistry. 1982;21:4252–8.CrossRefPubMed Bringhurst FR, Segre GV, Lampman GW, Potts Jr JT. Metabolism of parathyroid hormone by Kupffer cells: analysis by reverse-phase high-performance liquid chromatography. Biochemistry. 1982;21:4252–8.CrossRefPubMed
43.
go back to reference Slatopolsky E, Finch J, Clay P, Martin D, Sicard G, Singer G, et al. A novel mechanism for skeletal resistance in uremia. Kidney Int. 2000;58:753–61.CrossRefPubMed Slatopolsky E, Finch J, Clay P, Martin D, Sicard G, Singer G, et al. A novel mechanism for skeletal resistance in uremia. Kidney Int. 2000;58:753–61.CrossRefPubMed
44.
go back to reference Nguyen-Yamamoto L, Rousseau L, Brossard JH, Lepage R, D’Amour P. Synthetic carboxyl-terminal fragments of parathyroid hormone (PTH) decrease ionized calcium concentration in rats by acting on a receptor different from the PTH/PTH-related peptide receptor. Endocrinology. 2001;142:1386–92.CrossRefPubMed Nguyen-Yamamoto L, Rousseau L, Brossard JH, Lepage R, D’Amour P. Synthetic carboxyl-terminal fragments of parathyroid hormone (PTH) decrease ionized calcium concentration in rats by acting on a receptor different from the PTH/PTH-related peptide receptor. Endocrinology. 2001;142:1386–92.CrossRefPubMed
45.
go back to reference Daugaard H, Egfjord M, Lewin E, Olgaard K. Metabolism of N-terminal and C-terminal parathyroid hormone fragments by isolated perfused rat kidney and liver. Endocrinology. 1994;134:1373–81.PubMed Daugaard H, Egfjord M, Lewin E, Olgaard K. Metabolism of N-terminal and C-terminal parathyroid hormone fragments by isolated perfused rat kidney and liver. Endocrinology. 1994;134:1373–81.PubMed
46.
go back to reference Hruska KA, Martin K, Mennes P, Greenwalt A, Anderson C, Klahr S, et al. Degradation of parathyroid hormone and fragment production by the isolated perfused dog kidney. The effect of glomerular filtration rate and perfusate CA++ concentrations. J Clin Invest. 1977;60:501–10.CrossRefPubMedPubMedCentral Hruska KA, Martin K, Mennes P, Greenwalt A, Anderson C, Klahr S, et al. Degradation of parathyroid hormone and fragment production by the isolated perfused dog kidney. The effect of glomerular filtration rate and perfusate CA++ concentrations. J Clin Invest. 1977;60:501–10.CrossRefPubMedPubMedCentral
47.
go back to reference Hruska KA, Korkor A, Martin K, Slatopolsky E. Peripheral metabolism of intact parathyroid hormone. Role of liver and kidney and the effect of chronic renal failure. J Clin Invest. 1981;67:885–92.CrossRefPubMedPubMedCentral Hruska KA, Korkor A, Martin K, Slatopolsky E. Peripheral metabolism of intact parathyroid hormone. Role of liver and kidney and the effect of chronic renal failure. J Clin Invest. 1981;67:885–92.CrossRefPubMedPubMedCentral
48.
49.
go back to reference Gravesen E, Mace ML, Hofman-Bang J, Olgaard K, Lewin E. Circulating FGF23 levels in response to acute changes in plasma Ca(2+). Calcif Tissue Int. 2014;95:46–53.CrossRefPubMed Gravesen E, Mace ML, Hofman-Bang J, Olgaard K, Lewin E. Circulating FGF23 levels in response to acute changes in plasma Ca(2+). Calcif Tissue Int. 2014;95:46–53.CrossRefPubMed
Metadata
Title
A potential kidney - bone axis involved in the rapid minute-to-minute regulation of plasma Ca2+
Authors
Anders Nordholm
Maria L Mace
Eva Gravesen
Klaus Olgaard
Ewa Lewin
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2015
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-015-0019-3

Other articles of this Issue 1/2015

BMC Nephrology 1/2015 Go to the issue