Skip to main content
Top
Published in: BMC Medical Genetics 1/2019

Open Access 01-12-2019 | Immunodeficiency | Case report

An immunocompetent patient with a nonsense mutation in NHEJ1 gene

Authors: Hossein Esmaeilzadeh, Mohammad Reza Bordbar, Zahra Hojaji, Parham Habibzadeh, Dorna Afshinfar, Mohammad Miryounesi, Majid Fardaei, Mohammad Ali Faghihi

Published in: BMC Medical Genetics | Issue 1/2019

Login to get access

Abstract

Background

DNA double-strand breaks (DSBs) are among the most deleterious types of DNA damage. DSBs are repaired by homologous recombination or non-homologous end-joining (NHEJ). NHEJ, which is central to the process of V(D)J recombination is the principle pathway for DSB repair in higher eukaryotes. Mutations in NHEJ1 gene have been associated with severe combined immunodeficiency.

Case presentation

The patient was a 3.5-year-old girl, a product of consanguineous first-degree cousin marriage, who was homozygous for a nonsense mutation in NHEJ1 gene. She had initially presented with failure to thrive, proportional microcephaly as well as autoimmune hemolytic anemia (AIHA), which responded well to treatment with prednisolone. However, the patient was immunocompetent despite having this pathogenic mutation.

Conclusions

Herein, we report on a patient who was clinically immunocompetent despite having a pathogenic mutation in NHEJ1 gene. Our findings provided evidence for the importance of other end-joining auxiliary pathways that would function in maintaining genetic stability. Clinicians should therefore be aware that pathogenic mutations in NHEJ pathway are not necessarily associated with clinical immunodeficiency.
Literature
1.
go back to reference Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem. 2010;79:181–211.CrossRef Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem. 2010;79:181–211.CrossRef
2.
go back to reference Lieber MR, Karanjawala ZE. Ageing, repetitive genomes and DNA damage. Nat Rev Mol Cell Biol. 2004;5(1):69–75.CrossRef Lieber MR, Karanjawala ZE. Ageing, repetitive genomes and DNA damage. Nat Rev Mol Cell Biol. 2004;5(1):69–75.CrossRef
3.
go back to reference Gellert M. DNA double-strand breaks and hairpins in V(D)J recombination. Semin Immunol. 1994;6(3):125–30.CrossRef Gellert M. DNA double-strand breaks and hairpins in V(D)J recombination. Semin Immunol. 1994;6(3):125–30.CrossRef
4.
go back to reference El Waly B, Buhler E, Haddad MR, Villard L. Nhej1 deficiency causes abnormal development of the cerebral cortex. Mol Neurobiol. 2015;52(1):771–82.CrossRef El Waly B, Buhler E, Haddad MR, Villard L. Nhej1 deficiency causes abnormal development of the cerebral cortex. Mol Neurobiol. 2015;52(1):771–82.CrossRef
5.
go back to reference Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem. 2004;73:39–85.CrossRef Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem. 2004;73:39–85.CrossRef
6.
go back to reference Buck D, Malivert L, de Chasseval R, Barraud A, Fondaneche MC, Sanal O, Plebani A, Stephan JL, Hufnagel M, le Deist F, et al. Cernunnos, a novel nonhomologous end-joining factor, is mutated in human immunodeficiency with microcephaly. Cell. 2006;124(2):287–99.CrossRef Buck D, Malivert L, de Chasseval R, Barraud A, Fondaneche MC, Sanal O, Plebani A, Stephan JL, Hufnagel M, le Deist F, et al. Cernunnos, a novel nonhomologous end-joining factor, is mutated in human immunodeficiency with microcephaly. Cell. 2006;124(2):287–99.CrossRef
7.
go back to reference Revy P, Malivert L, de Villartay JP. Cernunnos-XLF, a recently identified non-homologous end-joining factor required for the development of the immune system. Curr Opin Allergy Clin Immunol. 2006;6(6):416–20.CrossRef Revy P, Malivert L, de Villartay JP. Cernunnos-XLF, a recently identified non-homologous end-joining factor required for the development of the immune system. Curr Opin Allergy Clin Immunol. 2006;6(6):416–20.CrossRef
8.
go back to reference Cagdas D, Ozgur TT, Asal GT, Revy P, De Villartay JP, van der Burg M, Sanal O, Tezcan I. Two SCID cases with Cernunnos-XLF deficiency successfully treated by hematopoietic stem cell transplantation. Pediatr Transplant. 2012;16(5):E167–71.CrossRef Cagdas D, Ozgur TT, Asal GT, Revy P, De Villartay JP, van der Burg M, Sanal O, Tezcan I. Two SCID cases with Cernunnos-XLF deficiency successfully treated by hematopoietic stem cell transplantation. Pediatr Transplant. 2012;16(5):E167–71.CrossRef
9.
go back to reference Sheikh F, Hawwari A, Alhissi S, Al Gazlan S, Al Dhekri H, Rehan Khaliq AM, Borrero E, El-Baik L, Arnaout R, Al-Mousa H, et al. Loss of NHEJ1 protein due to a novel splice site mutation in a family presenting with combined immunodeficiency, microcephaly, and growth retardation and literature review. J Clin Immunol. 2017;37(6):575–81.CrossRef Sheikh F, Hawwari A, Alhissi S, Al Gazlan S, Al Dhekri H, Rehan Khaliq AM, Borrero E, El-Baik L, Arnaout R, Al-Mousa H, et al. Loss of NHEJ1 protein due to a novel splice site mutation in a family presenting with combined immunodeficiency, microcephaly, and growth retardation and literature review. J Clin Immunol. 2017;37(6):575–81.CrossRef
10.
go back to reference Turul T, Tezcan I, Sanal O. Cernunnos deficiency: a case report. J Investig Allergol Clin Immunol. 2011;21(4):313–6.PubMed Turul T, Tezcan I, Sanal O. Cernunnos deficiency: a case report. J Investig Allergol Clin Immunol. 2011;21(4):313–6.PubMed
11.
go back to reference de Villartay JP, Fischer A, Durandy A. The mechanisms of immune diversification and their disorders. Nat Rev Immunol. 2003;3(12):962–72.CrossRef de Villartay JP, Fischer A, Durandy A. The mechanisms of immune diversification and their disorders. Nat Rev Immunol. 2003;3(12):962–72.CrossRef
12.
go back to reference Bryans M, Valenzano MC, Stamato TD. Absence of DNA ligase IV protein in XR-1 cells: evidence for stabilization by XRCC4. Mutat Res. 1999;433(1):53–8.CrossRef Bryans M, Valenzano MC, Stamato TD. Absence of DNA ligase IV protein in XR-1 cells: evidence for stabilization by XRCC4. Mutat Res. 1999;433(1):53–8.CrossRef
13.
go back to reference Dudley DD, Chaudhuri J, Bassing CH, Alt FW. Mechanism and control of V(D)J recombination versus class switch recombination: similarities and differences. Adv Immunol. 2005;86:43–112.CrossRef Dudley DD, Chaudhuri J, Bassing CH, Alt FW. Mechanism and control of V(D)J recombination versus class switch recombination: similarities and differences. Adv Immunol. 2005;86:43–112.CrossRef
14.
go back to reference Revy P, Buck D, le Deist F, de Villartay JP. The repair of DNA damages/modifications during the maturation of the immune system: lessons from human primary immunodeficiency disorders and animal models. Adv Immunol. 2005;87:237–95.CrossRef Revy P, Buck D, le Deist F, de Villartay JP. The repair of DNA damages/modifications during the maturation of the immune system: lessons from human primary immunodeficiency disorders and animal models. Adv Immunol. 2005;87:237–95.CrossRef
15.
go back to reference Cantagrel V, Lossi AM, Lisgo S, Missirian C, Borges A, Philip N, Fernandez C, Cardoso C, Figarella-Branger D, Moncla A, et al. Truncation of NHEJ1 in a patient with polymicrogyria. Hum Mutat. 2007;28(4):356–64.CrossRef Cantagrel V, Lossi AM, Lisgo S, Missirian C, Borges A, Philip N, Fernandez C, Cardoso C, Figarella-Branger D, Moncla A, et al. Truncation of NHEJ1 in a patient with polymicrogyria. Hum Mutat. 2007;28(4):356–64.CrossRef
16.
go back to reference Ferguson DO, Alt FW. DNA double strand break repair and chromosomal translocation: lessons from animal models. Oncogene. 2001;20(40):5572–9.CrossRef Ferguson DO, Alt FW. DNA double strand break repair and chromosomal translocation: lessons from animal models. Oncogene. 2001;20(40):5572–9.CrossRef
17.
go back to reference Berthet F, Caduff R, Schaad UB, Roten H, Tuchschmid P, Boltshauser E, Seger RA. A syndrome of primary combined immunodeficiency with microcephaly, cerebellar hypoplasia, growth failure and progressive pancytopenia. Eur J Pediatr. 1994;153(5):333–8.CrossRef Berthet F, Caduff R, Schaad UB, Roten H, Tuchschmid P, Boltshauser E, Seger RA. A syndrome of primary combined immunodeficiency with microcephaly, cerebellar hypoplasia, growth failure and progressive pancytopenia. Eur J Pediatr. 1994;153(5):333–8.CrossRef
18.
go back to reference Cipe FE, Aydogmus C, Babayigit Hocaoglu A, Kilic M, Kaya GD, Yilmaz Gulec E: Cernunnos/XLF deficiency: a syndromic primary immunodeficiency. Case Rep Pediatr 2014, 2014:614238. Cipe FE, Aydogmus C, Babayigit Hocaoglu A, Kilic M, Kaya GD, Yilmaz Gulec E: Cernunnos/XLF deficiency: a syndromic primary immunodeficiency. Case Rep Pediatr 2014, 2014:614238.
19.
go back to reference Wyatt DW, Feng W, Conlin MP, Yousefzadeh MJ, Roberts SA, Mieczkowski P, Wood RD, Gupta GP, Ramsden DA. Essential roles for polymerase theta-mediated end joining in the repair of chromosome breaks. Mol Cell. 2016;63(4):662–73.CrossRef Wyatt DW, Feng W, Conlin MP, Yousefzadeh MJ, Roberts SA, Mieczkowski P, Wood RD, Gupta GP, Ramsden DA. Essential roles for polymerase theta-mediated end joining in the repair of chromosome breaks. Mol Cell. 2016;63(4):662–73.CrossRef
20.
go back to reference Chang HHY, Pannunzio NR, Adachi N, Lieber MR. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol. 2017;18(8):495–506.CrossRef Chang HHY, Pannunzio NR, Adachi N, Lieber MR. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol. 2017;18(8):495–506.CrossRef
21.
go back to reference Marciano BE, Huang CY, Joshi G, Rezaei N, Carvalho BC, Allwood Z, Ikinciogullari A, Reda SM, Gennery A, Thon V, et al. BCG vaccination in patients with severe combined immunodeficiency: complications, risks, and vaccination policies. J Allergy Clin Immunol. 2014;133(4):1134–41.CrossRef Marciano BE, Huang CY, Joshi G, Rezaei N, Carvalho BC, Allwood Z, Ikinciogullari A, Reda SM, Gennery A, Thon V, et al. BCG vaccination in patients with severe combined immunodeficiency: complications, risks, and vaccination policies. J Allergy Clin Immunol. 2014;133(4):1134–41.CrossRef
22.
go back to reference Notarangelo LD. Primary immunodeficiencies (PIDs) presenting with cytopenias. Hematology Am Soc Hematol Educ Program. 2009:139–43. Notarangelo LD. Primary immunodeficiencies (PIDs) presenting with cytopenias. Hematology Am Soc Hematol Educ Program. 2009:139–43.
23.
go back to reference S A, M N, Bemanian MH, Shakeri R, Taghvaei B, Ghalebaghi B, Babaie D, Bahrami A, Fallahpour M, Esmaeilzadeh H, et al. Phenotyping and follow up of forty-seven Iranian patients with common variable immunodeficiency. Allergol Immunopathol (Madr). 2016;44(3):226–31.CrossRef S A, M N, Bemanian MH, Shakeri R, Taghvaei B, Ghalebaghi B, Babaie D, Bahrami A, Fallahpour M, Esmaeilzadeh H, et al. Phenotyping and follow up of forty-seven Iranian patients with common variable immunodeficiency. Allergol Immunopathol (Madr). 2016;44(3):226–31.CrossRef
Metadata
Title
An immunocompetent patient with a nonsense mutation in NHEJ1 gene
Authors
Hossein Esmaeilzadeh
Mohammad Reza Bordbar
Zahra Hojaji
Parham Habibzadeh
Dorna Afshinfar
Mohammad Miryounesi
Majid Fardaei
Mohammad Ali Faghihi
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Medical Genetics / Issue 1/2019
Electronic ISSN: 1471-2350
DOI
https://doi.org/10.1186/s12881-019-0784-0

Other articles of this Issue 1/2019

BMC Medical Genetics 1/2019 Go to the issue