Skip to main content
Top
Published in: BMC Medical Genetics 1/2018

Open Access 01-12-2018 | Case report

Phenotype heterogeneity of congenital adrenal hyperplasia due to genetic mosaicism and concomitant nephrogenic diabetes insipidus in a sibling

Authors: Yılmaz Kor, Minjing Zou, Roua A. Al-Rijjal, Dorota Monies, Brian F. Meyer, Yufei Shi

Published in: BMC Medical Genetics | Issue 1/2018

Login to get access

Abstract

Background

Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21OHD) is an autosomal recessive disorder caused by mutations in the CYP21A2. Congenital nephrogenic diabetes insipidus (NDI) is a rare X-linked recessive or autosomal recessive disorder caused by mutations in either AVPR2 or AQP2. Genotype-phenotype discordance caused by genetic mosaicism in CAH patients has not been reported, nor the concomitant CAH and NDI.

Case presentation

We investigated a patient with concomitant CAH and NDI from a consanguineous family. She (S-1) presented with clitoromegaly at 3 month of age, and polydipsia and polyuria at 13 month of age. Her parents and two elder sisters (S-2 and S-3) were clinically normal, but elevated levels of serum 17-hydroxyprogesterone (17-OHP) were observed in the mother and S-2. The coding region of CYP21A2 and AQP2 were analyzed by PCR-sequencing analysis to identify genetic defects. Two homozygous CYP21A2 mutations (p.R357W and p.P454S) were identified in the proband and her mother and S-2. The apparent genotype-phenotype discordance was due to presence of small amount of wild-type CYP21A2 alleles in S-1, S-2, and their mother’s genome, thus protecting them from development of classic form of 21OHD (C21OHD). A homozygous AQP2 mutation (p.A147T) was also found in the patient. The patient was treated with hydrocortisone and hydrochlorothiazide. Her symptoms were improved with normal laboratory findings. The clitoromegaly is persisted.

Conclusions

Genetic mosaicism is a novel mechanism contributing to the genotype-phenotype discordance in 21OHD and small percentage of wild-type CYP21A2 alleles may be sufficient to prevent phenotype development. This is a first report of concurrent 21OHD and NDI caused by simultaneous homozygous CYP21A2 and AQP2 mutations.
Literature
1.
go back to reference Miller WL. Clinical review 54: genetics, diagnosis, and management of 21-hydroxylase deficiency. J Clin Endocrinol Metab. 1994;78(2):241–6.PubMed Miller WL. Clinical review 54: genetics, diagnosis, and management of 21-hydroxylase deficiency. J Clin Endocrinol Metab. 1994;78(2):241–6.PubMed
2.
go back to reference New MI, Wilson RC. Steroid disorders in children: congenital adrenal hyperplasia and apparent mineralocorticoid excess. Proc Natl Acad Sci U S A. 1999;96(22):12790–7.CrossRefPubMedPubMedCentral New MI, Wilson RC. Steroid disorders in children: congenital adrenal hyperplasia and apparent mineralocorticoid excess. Proc Natl Acad Sci U S A. 1999;96(22):12790–7.CrossRefPubMedPubMedCentral
3.
go back to reference White PC, Speiser PW. Congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Endocr Rev. 2000;21(3):245–91.PubMed White PC, Speiser PW. Congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Endocr Rev. 2000;21(3):245–91.PubMed
5.
go back to reference Krone N, Braun A, Weinert S, Peter M, Roscher AA, Partsch CJ, Sippell WG. Multiplex minisequencing of the 21-hydroxylase gene as a rapid strategy to confirm congenital adrenal hyperplasia. Clin Chem. 2002;48(6 Pt 1):818–25.PubMed Krone N, Braun A, Weinert S, Peter M, Roscher AA, Partsch CJ, Sippell WG. Multiplex minisequencing of the 21-hydroxylase gene as a rapid strategy to confirm congenital adrenal hyperplasia. Clin Chem. 2002;48(6 Pt 1):818–25.PubMed
6.
go back to reference New MI. Extensive clinical experience: nonclassical 21-hydroxylase deficiency. J Clin Endocrinol Metab. 2006;91(11):4205–14. Epub 2006 Aug 4215CrossRefPubMed New MI. Extensive clinical experience: nonclassical 21-hydroxylase deficiency. J Clin Endocrinol Metab. 2006;91(11):4205–14. Epub 2006 Aug 4215CrossRefPubMed
10.
13.
go back to reference Mulders SM, Bichet DG, Rijss JP, Kamsteeg EJ, Arthus MF, Lonergan M, Fujiwara M, Morgan K, Leijendekker R, van der Sluijs P, et al. An aquaporin-2 water channel mutant which causes autosomal dominant nephrogenic diabetes insipidus is retained in the Golgi complex. J Clin Invest. 1998;102(1):57–66.CrossRefPubMedPubMedCentral Mulders SM, Bichet DG, Rijss JP, Kamsteeg EJ, Arthus MF, Lonergan M, Fujiwara M, Morgan K, Leijendekker R, van der Sluijs P, et al. An aquaporin-2 water channel mutant which causes autosomal dominant nephrogenic diabetes insipidus is retained in the Golgi complex. J Clin Invest. 1998;102(1):57–66.CrossRefPubMedPubMedCentral
15.
go back to reference Krenke BE, Tereba A, Anderson SJ, Buel E, Culhane S, Finis CJ, Tomsey CS, Zachetti JM, Masibay A, Rabbach DR, et al. Validation of a 16-locus fluorescent multiplex system. J Forensic Sci. 2002;47(4):773–85.CrossRefPubMed Krenke BE, Tereba A, Anderson SJ, Buel E, Culhane S, Finis CJ, Tomsey CS, Zachetti JM, Masibay A, Rabbach DR, et al. Validation of a 16-locus fluorescent multiplex system. J Forensic Sci. 2002;47(4):773–85.CrossRefPubMed
16.
go back to reference Mulders SM, Knoers NV, Van Lieburg AF, Monnens LA, Leumann E, Wuhl E, Schober E, Rijss JP, Van Os CH, Deen PM. New mutations in the AQP2 gene in nephrogenic diabetes insipidus resulting in functional but misrouted water channels. J Am Soc Nephrol. 1997;8(2):242–8.PubMed Mulders SM, Knoers NV, Van Lieburg AF, Monnens LA, Leumann E, Wuhl E, Schober E, Rijss JP, Van Os CH, Deen PM. New mutations in the AQP2 gene in nephrogenic diabetes insipidus resulting in functional but misrouted water channels. J Am Soc Nephrol. 1997;8(2):242–8.PubMed
18.
go back to reference Owerbach D, Sherman L, Ballard AL, Azziz R. Pro-453 to Ser mutation in CYP21 is associated with nonclassic steroid 21-hydroxylase deficiency. Mol Endocrinol. 1992;6(8):1211–5.PubMed Owerbach D, Sherman L, Ballard AL, Azziz R. Pro-453 to Ser mutation in CYP21 is associated with nonclassic steroid 21-hydroxylase deficiency. Mol Endocrinol. 1992;6(8):1211–5.PubMed
19.
22.
go back to reference Bichet DG, Oksche A, Rosenthal W. Congenital nephrogenic diabetes insipidus. J Am Soc Nephrol. 1997;8(12):1951–8.PubMed Bichet DG, Oksche A, Rosenthal W. Congenital nephrogenic diabetes insipidus. J Am Soc Nephrol. 1997;8(12):1951–8.PubMed
24.
go back to reference Fujiwara TM, Bichet DG. Molecular biology of hereditary diabetes insipidus. J Am Soc Nephrol. 2005;16(10):2836–46. Epub 2005 Aug 2810CrossRefPubMed Fujiwara TM, Bichet DG. Molecular biology of hereditary diabetes insipidus. J Am Soc Nephrol. 2005;16(10):2836–46. Epub 2005 Aug 2810CrossRefPubMed
25.
go back to reference Shinbo I, Fushimi K, Kasahara M, Yamauchi K, Sasaki S, Marumo F. Functional analysis of aquaporin-2 mutants associated with nephrogenic diabetes insipidus by yeast expression. Am J Phys. 1999;277(5 Pt 2):F734–41. Shinbo I, Fushimi K, Kasahara M, Yamauchi K, Sasaki S, Marumo F. Functional analysis of aquaporin-2 mutants associated with nephrogenic diabetes insipidus by yeast expression. Am J Phys. 1999;277(5 Pt 2):F734–41.
Metadata
Title
Phenotype heterogeneity of congenital adrenal hyperplasia due to genetic mosaicism and concomitant nephrogenic diabetes insipidus in a sibling
Authors
Yılmaz Kor
Minjing Zou
Roua A. Al-Rijjal
Dorota Monies
Brian F. Meyer
Yufei Shi
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Medical Genetics / Issue 1/2018
Electronic ISSN: 1471-2350
DOI
https://doi.org/10.1186/s12881-018-0629-2

Other articles of this Issue 1/2018

BMC Medical Genetics 1/2018 Go to the issue