Skip to main content
Top
Published in: BMC Medical Genetics 1/2017

Open Access 01-12-2017 | Research article

Identification of large genomic rearrangement of BRCA1/2 in high risk patients in Korea

Authors: Do-Hoon Kim, Hyojin Chae, Irene Jo, Jaeeun Yoo, Hyeyoung Lee, Woori Jang, Joonhong Park, Gun Dong Lee, Dong-Seok Jeon, Keun Ho Lee, Soo Young Hur, Byung Joo Chae, Byung Joo Song, Myungshin Kim, Yonggoo Kim

Published in: BMC Medical Genetics | Issue 1/2017

Login to get access

Abstract

Background

While the majority of germline inactivating mutations in BRCA1/2 are small-scale mutations, large genomic rearrangements (LGRs) are also detected in a variable proportion of patients. However, routine genetic methods are incapable of detecting LGRs, and comprehensive genetic testing algorithm is necessary.

Methods

We performed multiplex ligation-dependent probe amplification assay for small-scale mutation negative patients at high-risk for LGR, based on previously published LGR risk criteria. The inclusion criteria for the high-risk subgroup were personal history of 1) early-onset breast cancer (diagnosed at ≤36 years); 2) two breast primaries; 3) breast cancer diagnosed at any age, with ≥1 close blood relatives (includes first-, second-, or third-degree) with breast and/or epithelial ovarian cancer; 4) both breast and epithelial ovarian cancer diagnosed at any age; and 5) epithelial ovarian cancer with ≥1 close blood relatives with breast and/or epithelial ovarian cancer.

Results

Two LGRs were identified. One was a heterozygous deletion of exon 19 and the other was a heterozygous duplication of exon 4–6. The prevalence of LGRs was 7% among Sanger-negative, high-risk patients, and accounted for 13% of all BRCA1 mutations and 2% of all patients. Moreover, LGRs reported in Korean patients, including our 2 newly identified cases, were found exclusively in families with at least one high-risk feature.

Conclusions

Our result suggests that selective LGR screening for Sanger-negative, high-risk patients is necessary for Korean patients.
Literature
1.
go back to reference Jung KW, Won YJ, Kong HJ, Oh CM, Cho H, Lee DH, Lee KH. Cancer statistics in Korea: incidence, mortality, survival, and prevalence in 2012. Cancer Res Treat. 2015;47(2):127–41.CrossRefPubMedPubMedCentral Jung KW, Won YJ, Kong HJ, Oh CM, Cho H, Lee DH, Lee KH. Cancer statistics in Korea: incidence, mortality, survival, and prevalence in 2012. Cancer Res Treat. 2015;47(2):127–41.CrossRefPubMedPubMedCentral
3.
go back to reference Kang E, Seong MW, Park SK, Lee JW, Lee J, Kim LS, Lee JE, Kim SY, Jeong J, Han SA, et al. The prevalence and spectrum of BRCA1 and BRCA2 mutations in Korean population: recent update of the Korean Hereditary Breast Cancer (KOHBRA) study. Breast Cancer Res Treat. 2015;151(1):157–68.CrossRefPubMed Kang E, Seong MW, Park SK, Lee JW, Lee J, Kim LS, Lee JE, Kim SY, Jeong J, Han SA, et al. The prevalence and spectrum of BRCA1 and BRCA2 mutations in Korean population: recent update of the Korean Hereditary Breast Cancer (KOHBRA) study. Breast Cancer Res Treat. 2015;151(1):157–68.CrossRefPubMed
4.
go back to reference Ewald IP, Ribeiro PL, Palmero EI, Cossio SL, Giugliani R, Ashton-Prolla P. Genomic rearrangements in BRCA1 and BRCA2: A literature review. Genet Mole Biol. 2009;32(3):437–46.CrossRef Ewald IP, Ribeiro PL, Palmero EI, Cossio SL, Giugliani R, Ashton-Prolla P. Genomic rearrangements in BRCA1 and BRCA2: A literature review. Genet Mole Biol. 2009;32(3):437–46.CrossRef
5.
go back to reference Woodward AM, Davis TA, Silva AG, Kirk JA, Leary JA. Large genomic rearrangements of both BRCA2 and BRCA1 are a feature of the inherited breast/ovarian cancer phenotype in selected families. J Med Genet. 2005;42(5):e31.CrossRefPubMedPubMedCentral Woodward AM, Davis TA, Silva AG, Kirk JA, Leary JA. Large genomic rearrangements of both BRCA2 and BRCA1 are a feature of the inherited breast/ovarian cancer phenotype in selected families. J Med Genet. 2005;42(5):e31.CrossRefPubMedPubMedCentral
6.
go back to reference Sluiter MD, van Rensburg EJ. Large genomic rearrangements of the BRCA1 and BRCA2 genes: review of the literature and report of a novel BRCA1 mutation. Breast Cancer Res Treat. 2011;125(2):325–49.CrossRefPubMed Sluiter MD, van Rensburg EJ. Large genomic rearrangements of the BRCA1 and BRCA2 genes: review of the literature and report of a novel BRCA1 mutation. Breast Cancer Res Treat. 2011;125(2):325–49.CrossRefPubMed
7.
go back to reference Engert S, Wappenschmidt B, Betz B, Kast K, Kutsche M, Hellebrand H, Goecke TO, Kiechle M, Niederacher D, Schmutzler RK, et al. MLPA screening in the BRCA1 gene from 1,506 German hereditary breast cancer cases: novel deletions, frequent involvement of exon 17, and occurrence in single early-onset cases. Hum Mutat. 2008;29(7):948–58.CrossRefPubMed Engert S, Wappenschmidt B, Betz B, Kast K, Kutsche M, Hellebrand H, Goecke TO, Kiechle M, Niederacher D, Schmutzler RK, et al. MLPA screening in the BRCA1 gene from 1,506 German hereditary breast cancer cases: novel deletions, frequent involvement of exon 17, and occurrence in single early-onset cases. Hum Mutat. 2008;29(7):948–58.CrossRefPubMed
8.
9.
go back to reference James PA, Sawyer S, Boyle S, Young MA, Kovalenko S, Doherty R, McKinley J, Alsop K, Beshay V, Harris M, et al. Large genomic rearrangements in the familial breast and ovarian cancer gene BRCA1 are associated with an increased frequency of high risk features. Fam Cancer. 2015;14(2):287–95.CrossRefPubMed James PA, Sawyer S, Boyle S, Young MA, Kovalenko S, Doherty R, McKinley J, Alsop K, Beshay V, Harris M, et al. Large genomic rearrangements in the familial breast and ovarian cancer gene BRCA1 are associated with an increased frequency of high risk features. Fam Cancer. 2015;14(2):287–95.CrossRefPubMed
10.
go back to reference Park J, Jang W, Chae H, Kim Y, Chi HY, Kim M. Comparison of Targeted Next-Generation and Sanger Sequencing for the BRCA1 and BRCA2 Mutation Screening. Ann Lab Med. 2016;36(2):197–201.CrossRefPubMed Park J, Jang W, Chae H, Kim Y, Chi HY, Kim M. Comparison of Targeted Next-Generation and Sanger Sequencing for the BRCA1 and BRCA2 Mutation Screening. Ann Lab Med. 2016;36(2):197–201.CrossRefPubMed
11.
go back to reference Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24.CrossRefPubMedPubMedCentral Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24.CrossRefPubMedPubMedCentral
12.
go back to reference Cho JY, Cho DY, Ahn SH, Choi SY, Shin I, Park HG, Lee JW, Kim HJ, Yu JH, Ko BS, et al. Large genomic rearrangement of BRCA1 and BRCA2 genes in familial breast cancer patients in Korea. Fam Cancer. 2014;13(2):205–11.CrossRefPubMed Cho JY, Cho DY, Ahn SH, Choi SY, Shin I, Park HG, Lee JW, Kim HJ, Yu JH, Ko BS, et al. Large genomic rearrangement of BRCA1 and BRCA2 genes in familial breast cancer patients in Korea. Fam Cancer. 2014;13(2):205–11.CrossRefPubMed
13.
go back to reference Seong MW, Cho SI, Noh DY, Han W, Kim SW, Park CM, Park HW, Kim SY, Kim JY, Park SS. Low contribution of BRCA1/2 genomic rearrangement to high-risk breast cancer in the Korean population. Fam Cancer. 2009;8(4):505–8.CrossRefPubMed Seong MW, Cho SI, Noh DY, Han W, Kim SW, Park CM, Park HW, Kim SY, Kim JY, Park SS. Low contribution of BRCA1/2 genomic rearrangement to high-risk breast cancer in the Korean population. Fam Cancer. 2009;8(4):505–8.CrossRefPubMed
14.
go back to reference Seong MW, Cho SI, Kim KH, Chung IY, Kang E, Lee JW, Park SK, Lee MH, Choi DH, Yom CK, et al. A multi-institutional study of the prevalence of BRCA1 and BRCA2 large genomic rearrangements in familial breast cancer patients. BMC Cancer. 2014;14:645.CrossRefPubMedPubMedCentral Seong MW, Cho SI, Kim KH, Chung IY, Kang E, Lee JW, Park SK, Lee MH, Choi DH, Yom CK, et al. A multi-institutional study of the prevalence of BRCA1 and BRCA2 large genomic rearrangements in familial breast cancer patients. BMC Cancer. 2014;14:645.CrossRefPubMedPubMedCentral
15.
go back to reference Berry DA, Iversen Jr ES, Gudbjartsson DF, Hiller EH, Garber JE, Peshkin BN, Lerman C, Watson P, Lynch HT, Hilsenbeck SG, et al. BRCAPRO validation, sensitivity of genetic testing of BRCA1/BRCA2, and prevalence of other breast cancer susceptibility genes. J Clin Oncol. 2002;20(11):2701–12.CrossRefPubMed Berry DA, Iversen Jr ES, Gudbjartsson DF, Hiller EH, Garber JE, Peshkin BN, Lerman C, Watson P, Lynch HT, Hilsenbeck SG, et al. BRCAPRO validation, sensitivity of genetic testing of BRCA1/BRCA2, and prevalence of other breast cancer susceptibility genes. J Clin Oncol. 2002;20(11):2701–12.CrossRefPubMed
16.
go back to reference Gadzicki D, Evans DG, Harris H, Julian-Reynier C, Nippert I, Schmidtke J, Tibben A, van Asperen CJ, Schlegelberger B. Genetic testing for familial/hereditary breast cancer-comparison of guidelines and recommendations from the UK, France, the Netherlands and Germany. J Community Genet. 2011;2(2):53–69.CrossRefPubMedPubMedCentral Gadzicki D, Evans DG, Harris H, Julian-Reynier C, Nippert I, Schmidtke J, Tibben A, van Asperen CJ, Schlegelberger B. Genetic testing for familial/hereditary breast cancer-comparison of guidelines and recommendations from the UK, France, the Netherlands and Germany. J Community Genet. 2011;2(2):53–69.CrossRefPubMedPubMedCentral
17.
go back to reference Parmigiani G, Berry D, Aguilar O. Determining carrier probabilities for breast cancer-susceptibility genes BRCA1 and BRCA2. Am J Hum Genet. 1998;62(1):145–58.CrossRefPubMedPubMedCentral Parmigiani G, Berry D, Aguilar O. Determining carrier probabilities for breast cancer-susceptibility genes BRCA1 and BRCA2. Am J Hum Genet. 1998;62(1):145–58.CrossRefPubMedPubMedCentral
18.
go back to reference Kang E, Park SK, Lee JW, Kim Z, Noh WC, Jung Y, Yang JH, Jung SH, Kim SW. KOHBRA BRCA risk calculator (KOHCal): a model for predicting BRCA1 and BRCA2 mutations in Korean breast cancer patients. J Hum Genet. 2016;61(5):365–71.CrossRefPubMed Kang E, Park SK, Lee JW, Kim Z, Noh WC, Jung Y, Yang JH, Jung SH, Kim SW. KOHBRA BRCA risk calculator (KOHCal): a model for predicting BRCA1 and BRCA2 mutations in Korean breast cancer patients. J Hum Genet. 2016;61(5):365–71.CrossRefPubMed
19.
go back to reference Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434(7035):917–21.CrossRefPubMed Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434(7035):917–21.CrossRefPubMed
Metadata
Title
Identification of large genomic rearrangement of BRCA1/2 in high risk patients in Korea
Authors
Do-Hoon Kim
Hyojin Chae
Irene Jo
Jaeeun Yoo
Hyeyoung Lee
Woori Jang
Joonhong Park
Gun Dong Lee
Dong-Seok Jeon
Keun Ho Lee
Soo Young Hur
Byung Joo Chae
Byung Joo Song
Myungshin Kim
Yonggoo Kim
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Medical Genetics / Issue 1/2017
Electronic ISSN: 1471-2350
DOI
https://doi.org/10.1186/s12881-017-0398-3

Other articles of this Issue 1/2017

BMC Medical Genetics 1/2017 Go to the issue