Skip to main content
Top
Published in: BMC Medical Imaging 1/2020

Open Access 01-12-2020 | Research article

Discrimination of benign from malignant breast lesions in dense breasts with model-based analysis of regions-of-interest using directional diffusion-weighted images

Published in: BMC Medical Imaging | Issue 1/2020

Login to get access

Abstract

Background

There is an increasing interest in non-contrast-enhanced magnetic resonance imaging (MRI) for detecting and evaluating breast lesions. We present a methodology utilizing lesion core and periphery region of interest (ROI) features derived from directional diffusion-weighted imaging (DWI) data to evaluate performance in discriminating benign from malignant lesions in dense breasts.

Methods

We accrued 55 dense-breast cases with 69 lesions (31 benign; 38 cancer) at a single institution in a prospective study; cases with ROIs exceeding 7.50 cm2 were excluded, resulting in analysis of 50 cases with 63 lesions (29 benign, 34 cancers). Spin-echo echo-planar imaging DWI was acquired at 1.5 T and 3 T. Data from three diffusion encoding gradient directions were exported and processed independently. Lesion ROIs were hand-drawn on DWI images by two radiologists. A region growing algorithm generated 3D lesion models on augmented apparent-diffusion coefficient (ADC) maps and defined lesion core and lesion periphery sub-ROIs. A lesion-core and a lesion-periphery feature were defined and combined into an overall classifier whose performance was compared to that of mean ADC using receiver operating characteristic (ROC) analysis. Inter-observer variability in ROI definition was measured using Dice Similarity Coefficient (DSC).

Results

The region-growing algorithm for 3D lesion model generation improved inter-observer variability over hand drawn ROIs (DSC: 0.66 vs 0.56 (p < 0.001) with substantial agreement (DSC > 0.8) in 46% vs 13% of cases, respectively (p < 0.001)). The overall classifier improved discrimination over mean ADC, (ROC- area under the curve (AUC): 0.85 vs 0.75 and 0.83 vs 0.74 respectively for the two readers).

Conclusions

A classifier generated from directional DWI information using lesion core and lesion periphery information separately can improve lesion discrimination in dense breasts over mean ADC and should be considered for inclusion in computer-aided diagnosis algorithms. Our model-based ROIs could facilitate standardization of breast MRI computer-aided diagnostics (CADx).
Literature
1.
go back to reference Dekkers IA, Roos R, van der Molen AJ. Gadolinium retention after administration of contrast agents based on linear chelators and the recommendations of the European medicines agency. Eur Radiol. 2018;28(4):1579–84..CrossRef Dekkers IA, Roos R, van der Molen AJ. Gadolinium retention after administration of contrast agents based on linear chelators and the recommendations of the European medicines agency. Eur Radiol. 2018;28(4):1579–84..CrossRef
2.
go back to reference McDonald RJ, Levine D, Weinreb J, Kanal E, Davenport MS, Ellis JH, Jacobs PM, Lenkinski RE, Maravilla KR, Prince MR, Rowley HA. Gadolinium retention: a research roadmap from the 2018 NIH/ACR/RSNA workshop on gadolinium chelates. Radiology. 2018;289(2):517-34. https://doi.org/10.1148/radiol.2018181151. McDonald RJ, Levine D, Weinreb J, Kanal E, Davenport MS, Ellis JH, Jacobs PM, Lenkinski RE, Maravilla KR, Prince MR, Rowley HA. Gadolinium retention: a research roadmap from the 2018 NIH/ACR/RSNA workshop on gadolinium chelates. Radiology. 2018;289(2):517-34. https://​doi.​org/​10.​1148/​radiol.​2018181151.
3.
go back to reference Bickel H, Pinker K, Polanec S, Magometschnigg H, Wengert G, Spick C, et al. Diffusion-weighted imaging of breast lesions: region-of-interest placement and different ADC parameters influence apparent diffusion coefficient values. Eur Radiol. 2017;27(5):1883–92.CrossRef Bickel H, Pinker K, Polanec S, Magometschnigg H, Wengert G, Spick C, et al. Diffusion-weighted imaging of breast lesions: region-of-interest placement and different ADC parameters influence apparent diffusion coefficient values. Eur Radiol. 2017;27(5):1883–92.CrossRef
4.
go back to reference Arponent O, Sudah M, Masarwah A, Taina M, Rautiainen S, Kononen M, et al. Diffusion-Weighted Imaging in 3.0 Tesla Breast MRI: Diagnostic Performance and Tumor Characterization Using Small Subregions vs. Whole Tumor Regions of Interest. PLoS One. 2015;10(10):e0138702.CrossRef Arponent O, Sudah M, Masarwah A, Taina M, Rautiainen S, Kononen M, et al. Diffusion-Weighted Imaging in 3.0 Tesla Breast MRI: Diagnostic Performance and Tumor Characterization Using Small Subregions vs. Whole Tumor Regions of Interest. PLoS One. 2015;10(10):e0138702.CrossRef
5.
go back to reference Gity M, Moradi B, Arami R, Arabkheradmand A, Kazemi MA. Two different methods of region-of-interest placement for differentiation of benign and malignant breast lesions by apparent diffusion coefficient value. Asian Pac J Cancer Prev. 2018;19(10):2765–70.PubMedPubMedCentral Gity M, Moradi B, Arami R, Arabkheradmand A, Kazemi MA. Two different methods of region-of-interest placement for differentiation of benign and malignant breast lesions by apparent diffusion coefficient value. Asian Pac J Cancer Prev. 2018;19(10):2765–70.PubMedPubMedCentral
6.
go back to reference Partridge SC, Ziadloo A, Murthy R, White SW, Peacock S, Eby PR, et al. Diffusion tensor MRI: preliminary anisotropy measures and mapping of breast tumors. J Magn Reson Imaging. 2010;31(2):339–47.CrossRef Partridge SC, Ziadloo A, Murthy R, White SW, Peacock S, Eby PR, et al. Diffusion tensor MRI: preliminary anisotropy measures and mapping of breast tumors. J Magn Reson Imaging. 2010;31(2):339–47.CrossRef
7.
go back to reference Baltzer PA, Schafer A, Dietzel M, Grassel D, Gajda M, Camara O, et al. Diffusion tensor magnetic resonance imaging of the breast: a pilot study. Eur Radiol. 2011;21(1):1–10.CrossRef Baltzer PA, Schafer A, Dietzel M, Grassel D, Gajda M, Camara O, et al. Diffusion tensor magnetic resonance imaging of the breast: a pilot study. Eur Radiol. 2011;21(1):1–10.CrossRef
8.
go back to reference Hirano M, Satake H, Ishigaki S, Ikeda M, Kawai H, Naganawa S. Diffusion-weighted imaging of breast masses: comparison of diagnostic performance using various apparent diffusion coefficient parameters. AJR Am J Roentgenol. 2012;198(3):717–22.CrossRef Hirano M, Satake H, Ishigaki S, Ikeda M, Kawai H, Naganawa S. Diffusion-weighted imaging of breast masses: comparison of diagnostic performance using various apparent diffusion coefficient parameters. AJR Am J Roentgenol. 2012;198(3):717–22.CrossRef
9.
go back to reference Chen X, Li WL, Zhang YL, Wu Q, Guo YM, Bai ZL. Meta-analysis of quantitative diffusion-weighted MR imaging in the differential diagnosis of breast lesions. BMC Cancer. 2010;10:693.CrossRef Chen X, Li WL, Zhang YL, Wu Q, Guo YM, Bai ZL. Meta-analysis of quantitative diffusion-weighted MR imaging in the differential diagnosis of breast lesions. BMC Cancer. 2010;10:693.CrossRef
10.
go back to reference Wu LM, Chen J, Hu J, Gu HY, Xu JR, Hua J. Diffusion-weighted magnetic resonance imaging combined with T2-weighted images in the detection of small breast cancer: a single-center multi-observer study. Acta Radiol. 2014;55(1):24–31.CrossRef Wu LM, Chen J, Hu J, Gu HY, Xu JR, Hua J. Diffusion-weighted magnetic resonance imaging combined with T2-weighted images in the detection of small breast cancer: a single-center multi-observer study. Acta Radiol. 2014;55(1):24–31.CrossRef
11.
go back to reference Hatakenaka M, Soeda H, Yabuuchi H, Matsuo Y, Kamitani T, Oda Y, et al. Apparent diffusion coefficients of breast tumors: clinical application. Magn Reson Med Sci. 2008;7(1):23–9.CrossRef Hatakenaka M, Soeda H, Yabuuchi H, Matsuo Y, Kamitani T, Oda Y, et al. Apparent diffusion coefficients of breast tumors: clinical application. Magn Reson Med Sci. 2008;7(1):23–9.CrossRef
12.
go back to reference Imamura T, Isomoto I, Sueyoshi E, Yano H, Uga T, Abe K, et al. Diagnostic performance of ADC for non-mass-like breast lesions on MR imaging. Magn Reson Med Sci. 2010;9(4):217–25.CrossRef Imamura T, Isomoto I, Sueyoshi E, Yano H, Uga T, Abe K, et al. Diagnostic performance of ADC for non-mass-like breast lesions on MR imaging. Magn Reson Med Sci. 2010;9(4):217–25.CrossRef
13.
go back to reference Kul S, Cansu A, Alhan E, Dinc H, Gunes G, Reis A. Contribution of diffusion-weighted imaging to dynamic contrast-enhanced MRI in the characterization of breast tumors. AJR Am J Roentgenol. 2011;196(1):210–7.CrossRef Kul S, Cansu A, Alhan E, Dinc H, Gunes G, Reis A. Contribution of diffusion-weighted imaging to dynamic contrast-enhanced MRI in the characterization of breast tumors. AJR Am J Roentgenol. 2011;196(1):210–7.CrossRef
14.
go back to reference Partridge SC, McDonald ES. Diffusion weighted magnetic resonance imaging of the breast: protocol optimization, interpretation, and clinical applications. Magn Reson Imaging Clin N Am. 2013;21(3):601–24.CrossRef Partridge SC, McDonald ES. Diffusion weighted magnetic resonance imaging of the breast: protocol optimization, interpretation, and clinical applications. Magn Reson Imaging Clin N Am. 2013;21(3):601–24.CrossRef
15.
go back to reference Yili Z, Xiaoyan H, Hongwen D, Yun Z, Xin C, Peng W, et al. The value of diffusion-weighted imaging in assessing the ADC changes of tissues adjacent to breast carcinoma. BMC Cancer. 2009;9:18.CrossRef Yili Z, Xiaoyan H, Hongwen D, Yun Z, Xin C, Peng W, et al. The value of diffusion-weighted imaging in assessing the ADC changes of tissues adjacent to breast carcinoma. BMC Cancer. 2009;9:18.CrossRef
16.
go back to reference Zeilinger MG, Lell M, Baltzer PA, Dorfler A, Uder M, Dietzel M. Impact of post-processing methods on apparent diffusion coefficient values. Eur Radiol. 2017;27(3):946–55.CrossRef Zeilinger MG, Lell M, Baltzer PA, Dorfler A, Uder M, Dietzel M. Impact of post-processing methods on apparent diffusion coefficient values. Eur Radiol. 2017;27(3):946–55.CrossRef
17.
go back to reference Penn A, Thompson S, Brem R, Lehman C, Weatherall P, Schnall M, et al. Morphologic blooming in breast MRI as a characterization of margin for discriminating benign from malignant lesions. Acad Radiol. 2006;13(11):1344–54.CrossRef Penn A, Thompson S, Brem R, Lehman C, Weatherall P, Schnall M, et al. Morphologic blooming in breast MRI as a characterization of margin for discriminating benign from malignant lesions. Acad Radiol. 2006;13(11):1344–54.CrossRef
18.
go back to reference Asgeirsson KS, McCulley SJ, Pinder SE, Macmillan RD. Size of invasive breast cancer and risk of local recurrence after breast-conservation therapy. Eur J Cancer. 2003;39(17):2462–9.CrossRef Asgeirsson KS, McCulley SJ, Pinder SE, Macmillan RD. Size of invasive breast cancer and risk of local recurrence after breast-conservation therapy. Eur J Cancer. 2003;39(17):2462–9.CrossRef
19.
go back to reference Penn A, Reich B, Pisano E, Dialani V, Cole E, Brousseau D, et al. A multi-directional methodology for discriminating benign from malignant lesions on DWI for women with dense breasts. 25th annual meeting of ISMRM. Honolulu: ISMRM; 2017. Penn A, Reich B, Pisano E, Dialani V, Cole E, Brousseau D, et al. A multi-directional methodology for discriminating benign from malignant lesions on DWI for women with dense breasts. 25th annual meeting of ISMRM. Honolulu: ISMRM; 2017.
20.
go back to reference Jaccard P. The distribution of the flora in the alpine zone. New Phytol. 1912;11(2):37–50.CrossRef Jaccard P. The distribution of the flora in the alpine zone. New Phytol. 1912;11(2):37–50.CrossRef
21.
go back to reference Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12:77.CrossRef Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12:77.CrossRef
22.
go back to reference Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159–74.CrossRef Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159–74.CrossRef
23.
go back to reference Zou KH, Warfield SK, Bharatha A, Tempany CM, Kaus MR, Haker SJ, et al. Statistical validation of image segmentation quality based on a spatial overlap index. Acad Radiol. 2004;11(2):178–89.CrossRef Zou KH, Warfield SK, Bharatha A, Tempany CM, Kaus MR, Haker SJ, et al. Statistical validation of image segmentation quality based on a spatial overlap index. Acad Radiol. 2004;11(2):178–89.CrossRef
Metadata
Title
Discrimination of benign from malignant breast lesions in dense breasts with model-based analysis of regions-of-interest using directional diffusion-weighted images
Publication date
01-12-2020
Published in
BMC Medical Imaging / Issue 1/2020
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/s12880-020-00458-3

Other articles of this Issue 1/2020

BMC Medical Imaging 1/2020 Go to the issue