Skip to main content
Top
Published in: BMC Medical Imaging 1/2020

01-12-2020 | Magnetic Resonance Imaging | Technical advance

Feasibility of pulmonary MRI for nodule detection in comparison to computed tomography

Authors: Nan Yu, Chuangbo Yang, Guangming Ma, Shan Dang, Zhanli Ren, Shaoyu Wang, Yong Yu

Published in: BMC Medical Imaging | Issue 1/2020

Login to get access

Abstract

Background

To assess the feasibility of various magnetic resonance imaging (MRI) sequences for the detection of pulmonary nodules by comparing the detection rate of computed tomography (CT).

Methods

Forty-two patients with pulmonary nodules detected by multi-slice CT (MSCT) were prospectively enrolled in the present study between November 2016 and February 2017. Chest MRI was acquired within 24 h of CT. The MRI protocol included free-breathing radial VIBE (r-VIBE) and a conventional breathhold T1-weighted VIBE (C-VIBE) were analyzed by two independent radiologists. Both detection and morphology results of each MRI image were recorded. Subjective image evaluation in terms of overall nodule morphology on the MRI images was carried out using the 4-point scoring criteria. The MRI results were compared with those from CT, with the results of MSCT serving as the reference standard.

Results

Two hundred and fifty-eight solid pulmonary nodules in 42 patients were detected by CT. The r-VIBE correctly detected 94% of the pulmonary nodules as compared with CT. The detection rate increased to 100% for lesions ≥6 mm. The C-VIBE had a lower overall detection rate (64.3%) of pulmonary nodules. The difference in the subjective image evaluation scores between the two sequences was statistically significant (p < 0.001).

Conclusion

Significantly increased detection rates were obtained with free-breathing r-VIBE as compared with C-VIBE for the detection of pulmonary nodules and also provided more information when evaluating the nodules as compared with C-VIBE.
Literature
1.
go back to reference Schaarschmidt B, Buchbender C, Gomez B, Rubbert C, Hild F, Köhler J, et al. Thoracic staging of non-small-cell lung cancer using integrated (18) F-FDG PET/MR imaging: diagnostic value of different MR sequences. Eur J Nucl Med Mol Imaging. 2015;42:1257–67.CrossRef Schaarschmidt B, Buchbender C, Gomez B, Rubbert C, Hild F, Köhler J, et al. Thoracic staging of non-small-cell lung cancer using integrated (18) F-FDG PET/MR imaging: diagnostic value of different MR sequences. Eur J Nucl Med Mol Imaging. 2015;42:1257–67.CrossRef
2.
go back to reference Sieren JC, Ohno Y, Koyama H, Sugimura K, McLennan G. Recent technological and application developments in computed tomography and magnetic resonance imaging for improved pulmonary nodule detection and lung cancer staging. J Magn Reson Imaging. 2010;32:1353–69.CrossRef Sieren JC, Ohno Y, Koyama H, Sugimura K, McLennan G. Recent technological and application developments in computed tomography and magnetic resonance imaging for improved pulmonary nodule detection and lung cancer staging. J Magn Reson Imaging. 2010;32:1353–69.CrossRef
3.
go back to reference Biederer J, Hintze C, Fabel M. MRI of pulmonary nodules technique and diagnostic value. Cancer Imaging. 2008;8:125–30.CrossRef Biederer J, Hintze C, Fabel M. MRI of pulmonary nodules technique and diagnostic value. Cancer Imaging. 2008;8:125–30.CrossRef
4.
go back to reference Wielpütz M, Kauczor HU. MRI of the lung: state of the art. Diagn Interv Radiol. 2012;18:344–53.PubMed Wielpütz M, Kauczor HU. MRI of the lung: state of the art. Diagn Interv Radiol. 2012;18:344–53.PubMed
5.
go back to reference Kumar S, Rai R, Moses D, Choong C, Holloway L, Vinod SK, Liney G. MRI in radiotherapy for lung Cancer: a free breathing protocol at 3T. Pract Radiat Oncol. 2017;7(3):e175–83.CrossRef Kumar S, Rai R, Moses D, Choong C, Holloway L, Vinod SK, Liney G. MRI in radiotherapy for lung Cancer: a free breathing protocol at 3T. Pract Radiat Oncol. 2017;7(3):e175–83.CrossRef
6.
go back to reference Kumar S, Liney G, Rai R, Holloway L, Moses D, Vinod SK. Magnetic resonance imaging in lung: a review of its potential for radiotherapy. Br J Radiol. 2016;89(1060):20150431.CrossRef Kumar S, Liney G, Rai R, Holloway L, Moses D, Vinod SK. Magnetic resonance imaging in lung: a review of its potential for radiotherapy. Br J Radiol. 2016;89(1060):20150431.CrossRef
7.
go back to reference Ohno Y, Koyama H, Yoshikawa T, Seki S, Takenaka D, Yui M, Lu A, Miyazaki M, Sugimura K. Pulmonary high-resolution ultra-short TE MR imaging: comparison with thin-section standard and low-dose computed tomography for the assessment of pulmonary parenchyma diseases. J Magn Reson Imaging. 2016;43(2):512–32.CrossRef Ohno Y, Koyama H, Yoshikawa T, Seki S, Takenaka D, Yui M, Lu A, Miyazaki M, Sugimura K. Pulmonary high-resolution ultra-short TE MR imaging: comparison with thin-section standard and low-dose computed tomography for the assessment of pulmonary parenchyma diseases. J Magn Reson Imaging. 2016;43(2):512–32.CrossRef
8.
go back to reference Meier-Schroers M, Homsi R, Skowasch D, Buermann J, Zipfel M, Schild HH, Thomas D. Lung cancer screening with MRI: results of the first screening round. J Cancer Res Clin Oncol. 2018;144(1):117–25.CrossRef Meier-Schroers M, Homsi R, Skowasch D, Buermann J, Zipfel M, Schild HH, Thomas D. Lung cancer screening with MRI: results of the first screening round. J Cancer Res Clin Oncol. 2018;144(1):117–25.CrossRef
9.
go back to reference Biederer J, Schoene A, Freitag S, Reuter M, Heller M. Simulated pulmonary nodules implanted in a dedicated porcine chest phantom: sensitivity of MR imaging for detection. Radiology. 2003;227:475–83.CrossRef Biederer J, Schoene A, Freitag S, Reuter M, Heller M. Simulated pulmonary nodules implanted in a dedicated porcine chest phantom: sensitivity of MR imaging for detection. Radiology. 2003;227:475–83.CrossRef
10.
go back to reference Cieszanowski A, Lisowska A, Dabrowska M, Korczynski P, Zukowska M, Grudzinski IP, Pacho R, Rowinski O, Krenke R. MR imaging of pulmonary nodules: detection rate and accuracy of size estimation in comparison to computed tomography. PLoS One. 2016;11:e0156272.CrossRef Cieszanowski A, Lisowska A, Dabrowska M, Korczynski P, Zukowska M, Grudzinski IP, Pacho R, Rowinski O, Krenke R. MR imaging of pulmonary nodules: detection rate and accuracy of size estimation in comparison to computed tomography. PLoS One. 2016;11:e0156272.CrossRef
11.
go back to reference Meier-Schroers M, Kukuk G, Homsi R, Skowasch D, Schild HH, Thomas D. MRI of the lung using the PROPELLER technique: Artifact reduction, better image quality and improved nodule detection. Eur J Radiol. 2016;85:707–13.CrossRef Meier-Schroers M, Kukuk G, Homsi R, Skowasch D, Schild HH, Thomas D. MRI of the lung using the PROPELLER technique: Artifact reduction, better image quality and improved nodule detection. Eur J Radiol. 2016;85:707–13.CrossRef
12.
go back to reference Dewes P, Frellesen C, Al-Butmeh F, Albrecht MH, Scholtz J-E, Metzger SC, Lehnert T, Vogl TJ, Wichmann JL. Comparative evaluation of non-contrast CAIPIRINHA-VIBE 3T-MRI and multidetector CT for detection of pulmonary nodules: In vivo evaluation of diagnostic accuracy and image quality. Eur J Radiol. 2016;85:193.CrossRef Dewes P, Frellesen C, Al-Butmeh F, Albrecht MH, Scholtz J-E, Metzger SC, Lehnert T, Vogl TJ, Wichmann JL. Comparative evaluation of non-contrast CAIPIRINHA-VIBE 3T-MRI and multidetector CT for detection of pulmonary nodules: In vivo evaluation of diagnostic accuracy and image quality. Eur J Radiol. 2016;85:193.CrossRef
13.
go back to reference Koyama H, Ohno Y, Seki S, Nishio M, Yoshikawa T, Matsumoto S, Sugimura K. Magnetic resonance imaging for lung cancer. J Thorac Imaging. 2013;28:138–50.CrossRef Koyama H, Ohno Y, Seki S, Nishio M, Yoshikawa T, Matsumoto S, Sugimura K. Magnetic resonance imaging for lung cancer. J Thorac Imaging. 2013;28:138–50.CrossRef
14.
go back to reference Azevedo RM, de Campos RO, Ramalho M, Herédia V, Dale BM, Semelka RC. Free-breathing 3D T1-weighted gradient-echo sequence with radial data sampling in abdominal MRI: preliminary observations. AJR Am J Roentgenol. 2011;197:650–7.CrossRef Azevedo RM, de Campos RO, Ramalho M, Herédia V, Dale BM, Semelka RC. Free-breathing 3D T1-weighted gradient-echo sequence with radial data sampling in abdominal MRI: preliminary observations. AJR Am J Roentgenol. 2011;197:650–7.CrossRef
15.
go back to reference Chandarana H, Block TK, Rosenkrantz AB, Lim RP, Kim D, Mossa DJ, Babb JS, Kiefer B, Lee VS. Free-breathing radial 3D fat-suppressed T1-weighted gradient echo sequence: a viable alternative for contrast-enhanced liver imaging in patients unable to suspend respiration. Investig Radiol. 2011;46:648–53.CrossRef Chandarana H, Block TK, Rosenkrantz AB, Lim RP, Kim D, Mossa DJ, Babb JS, Kiefer B, Lee VS. Free-breathing radial 3D fat-suppressed T1-weighted gradient echo sequence: a viable alternative for contrast-enhanced liver imaging in patients unable to suspend respiration. Investig Radiol. 2011;46:648–53.CrossRef
16.
go back to reference Bamrungchart S, Tantaway EM, Midia EC, Hernandes MA, Srirattanapong S, Dale BM, Semelka RC. Free breathing threedimensional gradient echo-sequence with radial data sampling (radial 3D-GRE) examination of the pancreas: comparison with standard 3D-GRE volumetric interpolated breathhold examination (VIBE). J Magn Reson Imaging. 2013;38:1572–7.CrossRef Bamrungchart S, Tantaway EM, Midia EC, Hernandes MA, Srirattanapong S, Dale BM, Semelka RC. Free breathing threedimensional gradient echo-sequence with radial data sampling (radial 3D-GRE) examination of the pancreas: comparison with standard 3D-GRE volumetric interpolated breathhold examination (VIBE). J Magn Reson Imaging. 2013;38:1572–7.CrossRef
17.
go back to reference Chandarana H, Feng L, Block TK, Rosenkrantz AB, Lim RP, Babb JS, Sodickson DK, Otazo R. Free-breathing contrast-enhanced multiphase MRI of the liver using a combination of compressed sensing, parallel imaging, and golden-angle radial sampling. Investig Radiol. 2013;48:10–6.CrossRef Chandarana H, Feng L, Block TK, Rosenkrantz AB, Lim RP, Babb JS, Sodickson DK, Otazo R. Free-breathing contrast-enhanced multiphase MRI of the liver using a combination of compressed sensing, parallel imaging, and golden-angle radial sampling. Investig Radiol. 2013;48:10–6.CrossRef
18.
go back to reference Chandarana H, Block KT, Winfeld MJ, Lala SV, Mazori D, Giuffrida E, Babb JS, Milla SS. Free-breathing contrast-enhanced T1-weighted gradient-echo imaging with radial k-space sampling for paediatricabdominopelvic MRI. Eur Radiol. 2014;24:320–6.CrossRef Chandarana H, Block KT, Winfeld MJ, Lala SV, Mazori D, Giuffrida E, Babb JS, Milla SS. Free-breathing contrast-enhanced T1-weighted gradient-echo imaging with radial k-space sampling for paediatricabdominopelvic MRI. Eur Radiol. 2014;24:320–6.CrossRef
19.
go back to reference Wright KL, Chen Y, Saybasili H, Griswold MA, Seiberlich N, Gulani V. Quantitative high-resolution renal perfusion imaging using 3-dimensional through-time radial generalized autocalibrating partially parallel acquisition. Investig Radiol. 2014;49:666–74.CrossRef Wright KL, Chen Y, Saybasili H, Griswold MA, Seiberlich N, Gulani V. Quantitative high-resolution renal perfusion imaging using 3-dimensional through-time radial generalized autocalibrating partially parallel acquisition. Investig Radiol. 2014;49:666–74.CrossRef
20.
go back to reference Kumar S, Rai R, Stemmer A, Josan S, Holloway L, Vinod S, Moses D, Liney G. Feasibility of free breathing Lung MRI for Radiotherapy using non-Cartesian k-space acquisition schemes. Br J Radiol. 2017;90(1080):20170037.CrossRef Kumar S, Rai R, Stemmer A, Josan S, Holloway L, Vinod S, Moses D, Liney G. Feasibility of free breathing Lung MRI for Radiotherapy using non-Cartesian k-space acquisition schemes. Br J Radiol. 2017;90(1080):20170037.CrossRef
21.
go back to reference Yedururi S, Kang HC, Wei W, Wagner-Bartak NA, Marcal LP, Stafford RJ, Willis BJ, Szklaruk J. Free-breathing radial volumetric interpolated breath-hold examination vs breath-hold cartesian volumetric interpolated breath-hold examination magnetic resonance imaging of the liver at 1.5T. World J Radiol. 2016;8:707–15.CrossRef Yedururi S, Kang HC, Wei W, Wagner-Bartak NA, Marcal LP, Stafford RJ, Willis BJ, Szklaruk J. Free-breathing radial volumetric interpolated breath-hold examination vs breath-hold cartesian volumetric interpolated breath-hold examination magnetic resonance imaging of the liver at 1.5T. World J Radiol. 2016;8:707–15.CrossRef
22.
go back to reference Chandarana H, Heacock L, Rakheja R, DeMello LR, Bonavita J, Block TK, Geppert C, Babb JS, Friedman KP. Pulmonary nodules in patients with primary malignancy: comparison of hybrid PET/MR and PET/CT imaging. Radiology. 2013;268(3):874–81.CrossRef Chandarana H, Heacock L, Rakheja R, DeMello LR, Bonavita J, Block TK, Geppert C, Babb JS, Friedman KP. Pulmonary nodules in patients with primary malignancy: comparison of hybrid PET/MR and PET/CT imaging. Radiology. 2013;268(3):874–81.CrossRef
Metadata
Title
Feasibility of pulmonary MRI for nodule detection in comparison to computed tomography
Authors
Nan Yu
Chuangbo Yang
Guangming Ma
Shan Dang
Zhanli Ren
Shaoyu Wang
Yong Yu
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2020
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/s12880-020-00451-w

Other articles of this Issue 1/2020

BMC Medical Imaging 1/2020 Go to the issue