Skip to main content
Top
Published in: BMC Medical Imaging 1/2019

Open Access 01-12-2019 | Magnetic Resonance Imaging | Research article

Quantification of porcine myocardial perfusion with modified dual bolus MRI – a prospective study with a PET reference

Authors: Minna Husso, Mikko J. Nissi, Antti Kuivanen, Paavo Halonen, Miikka Tarkia, Jarmo Teuho, Virva Saunavaara, Pauli Vainio, Petri Sipola, Hannu Manninen, Seppo Ylä-Herttuala, Juhani Knuuti, Juha Töyräs

Published in: BMC Medical Imaging | Issue 1/2019

Login to get access

Abstract

Background

The reliable quantification of myocardial blood flow (MBF) with MRI, necessitates the correction of errors in arterial input function (AIF) caused by the T1 saturation effect. The aim of this study was to compare MBF determined by a traditional dual bolus method against a modified dual bolus approach and to evaluate both methods against PET in a porcine model of myocardial ischemia.

Methods

Local myocardial ischemia was induced in five pigs, which were subsequently examined with contrast enhanced MRI (gadoteric acid) and PET (O-15 water). In the determination of MBF, the initial high concentration AIF was corrected using the ratio of low and high contrast AIF areas, normalized according to the corresponding heart rates. MBF was determined from the MRI, during stress and at rest, using the dual bolus and the modified dual bolus methods in 24 segments of the myocardium (total of 240 segments, five pigs in stress and rest). Due to image artifacts and technical problems 53% of the segments had to be rejected from further analyses. These two estimates were later compared against respective rest and stress PET-based MBF measurements.

Results

Values of MBF were determined for 112/240 regions. Correlations for MBF between the modified dual bolus method and PET was rs = 0.84, and between the traditional dual bolus method and PET rs = 0.79. The intraclass correlation was very good (ICC = 0.85) between the modified dual bolus method and PET, but poor between the traditional dual bolus method and PET (ICC = 0.07).

Conclusions

The modified dual bolus method showed a better agreement with PET than the traditional dual bolus method. The modified dual bolus method was found to be more reliable than the traditional dual bolus method, especially when there was variation in the heart rate. However, the difference between the MBF values estimated with either of the two MRI-based dual-bolus methods and those estimated with the gold-standard PET method were statistically significant.
Appendix
Available only for authorised users
Literature
1.
go back to reference Reddy GP, Pujadas S, Ordovas KG, Higgins CB. MR imaging of ischemic heart disease. Magn Reson Imaging Clin N Am. 2008;16(2):201–12.CrossRef Reddy GP, Pujadas S, Ordovas KG, Higgins CB. MR imaging of ischemic heart disease. Magn Reson Imaging Clin N Am. 2008;16(2):201–12.CrossRef
2.
go back to reference Roberts TP. Physiologic measurements by contrast-enhanced MR imaging: expectations and limitations. J Magn Reson Imaging. 1997;7(1):82–90.CrossRef Roberts TP. Physiologic measurements by contrast-enhanced MR imaging: expectations and limitations. J Magn Reson Imaging. 1997;7(1):82–90.CrossRef
3.
go back to reference Fritz-Hansen T, Hove JD, Kofoed KF, Kelbaek H, Larsson HB. Quantification of MRI measured myocardial perfusion reserve in healthy humans: a comparison with positron emission tomography. J Magn Reson Imaging. 2008;27(4):818–24.CrossRef Fritz-Hansen T, Hove JD, Kofoed KF, Kelbaek H, Larsson HB. Quantification of MRI measured myocardial perfusion reserve in healthy humans: a comparison with positron emission tomography. J Magn Reson Imaging. 2008;27(4):818–24.CrossRef
4.
go back to reference Miller C, Naish J, Ainslie M, Tonge C, Tout D, Arumugam P, Banerji A, Egdell R, Clark D, Weale P, Steadman C, McCann G, Ray S, Parker G, Schmitt M. Voxel-wise quantification of myocardial blood flow with cardiovascular magnetic resonance: effect of variations in methodology and validation with positron emission tomography. J Cardiovasc Magn Reson. 2014;16:11.CrossRef Miller C, Naish J, Ainslie M, Tonge C, Tout D, Arumugam P, Banerji A, Egdell R, Clark D, Weale P, Steadman C, McCann G, Ray S, Parker G, Schmitt M. Voxel-wise quantification of myocardial blood flow with cardiovascular magnetic resonance: effect of variations in methodology and validation with positron emission tomography. J Cardiovasc Magn Reson. 2014;16:11.CrossRef
5.
go back to reference Just N, Koh D, D'Arcy J, Collins D, Leach M. Assessment of the effec tof haematocrit-dependent arterial inputf unctions on the accuracy of pharmacokinetic parameters in dynamic contrast-enhanced MRI. NMR Biomed. 2011;24:902–15.CrossRef Just N, Koh D, D'Arcy J, Collins D, Leach M. Assessment of the effec tof haematocrit-dependent arterial inputf unctions on the accuracy of pharmacokinetic parameters in dynamic contrast-enhanced MRI. NMR Biomed. 2011;24:902–15.CrossRef
6.
go back to reference Jerosch-Herold M, Swingen C, Seethamraju RT. Myocardial blood flow quantification with MRI by model-independent deconvolution. Med Phys. 2002;29(5):886–97.CrossRef Jerosch-Herold M, Swingen C, Seethamraju RT. Myocardial blood flow quantification with MRI by model-independent deconvolution. Med Phys. 2002;29(5):886–97.CrossRef
7.
go back to reference Christian T, Bell S, Whitesell L, Jerosch-Herold M. Accuracy of cardiac magnetic resonance of absolute myocardial blood flow with a high-field system: comparison with conventional field strength. JACC Cardiovasc Imaging. 2009;2(9):1103–10.CrossRef Christian T, Bell S, Whitesell L, Jerosch-Herold M. Accuracy of cardiac magnetic resonance of absolute myocardial blood flow with a high-field system: comparison with conventional field strength. JACC Cardiovasc Imaging. 2009;2(9):1103–10.CrossRef
8.
go back to reference Wilke N, Jerosch-Herold M, Wang Y, Huang Y, Christensen B, Stillman A, Ugurbil K, McDonald K, Wilson R. Myocardial perfusion reserve: assessment with multisection, quantitative, first-pass MR imaging. Radiology. 1997;204(2):373–84.CrossRef Wilke N, Jerosch-Herold M, Wang Y, Huang Y, Christensen B, Stillman A, Ugurbil K, McDonald K, Wilson R. Myocardial perfusion reserve: assessment with multisection, quantitative, first-pass MR imaging. Radiology. 1997;204(2):373–84.CrossRef
9.
go back to reference Christian TF, Aletras A, Arai A. Estimation of absolute myocardial blood flow during first-pass MR perfusion imaging using a dual-bolus injection technique: comparison to single-bolus injection method. J Magn Reson Imaging. 2008;27(6):1271–7.CrossRef Christian TF, Aletras A, Arai A. Estimation of absolute myocardial blood flow during first-pass MR perfusion imaging using a dual-bolus injection technique: comparison to single-bolus injection method. J Magn Reson Imaging. 2008;27(6):1271–7.CrossRef
10.
go back to reference Gatehouse PD, Elkington AG, Ablitt NA, Yang G, Pennell DJ, Firmin DN. Accurate assessment of the arterial input function during high-dose myocardial perfusion cardiovascular magnetic resonance. J Magn Reson Imaging. 2004;20(1):39–45.CrossRef Gatehouse PD, Elkington AG, Ablitt NA, Yang G, Pennell DJ, Firmin DN. Accurate assessment of the arterial input function during high-dose myocardial perfusion cardiovascular magnetic resonance. J Magn Reson Imaging. 2004;20(1):39–45.CrossRef
11.
go back to reference Sánchez-González J, Fernandez-Jiménez R, Nothnagel ND, López-Martín G, Fuster V, Ibañez B. Optimization of dual-saturation single bolus acquisition for quantitative cardiac perfusion and myocardial blood flow maps. J Cardiovasc Magn Reson. 2015;19(17):21.CrossRef Sánchez-González J, Fernandez-Jiménez R, Nothnagel ND, López-Martín G, Fuster V, Ibañez B. Optimization of dual-saturation single bolus acquisition for quantitative cardiac perfusion and myocardial blood flow maps. J Cardiovasc Magn Reson. 2015;19(17):21.CrossRef
12.
go back to reference Köstler H, Ritter C, Lipp M, Beer M, Hahn D, Sandstede J. Prebolus quantitative MR heart perfusion imaging. Magn Reson Med. 2004;52(2):296–9.CrossRef Köstler H, Ritter C, Lipp M, Beer M, Hahn D, Sandstede J. Prebolus quantitative MR heart perfusion imaging. Magn Reson Med. 2004;52(2):296–9.CrossRef
13.
go back to reference Christian TF, Rettmann DW, Aletras AH, Liao SL, Taylor JL, Balaban RS, Arai AE. Absolute myocardial perfusion in canines measured by using dual-bolus first-pass MR imaging. Radiology. 2004;232(3):677–84.CrossRef Christian TF, Rettmann DW, Aletras AH, Liao SL, Taylor JL, Balaban RS, Arai AE. Absolute myocardial perfusion in canines measured by using dual-bolus first-pass MR imaging. Radiology. 2004;232(3):677–84.CrossRef
14.
go back to reference Husso M, Sipola P, Kuittinen T, Manninen H, Vainio P, Hartikainen J, Saarakkala S, Töyräs J, Kuikka J. Assessment of myocardial perfusion with MRI using a modified dual bolus method. Physiol Meas. 2014;35(4):533–47.CrossRef Husso M, Sipola P, Kuittinen T, Manninen H, Vainio P, Hartikainen J, Saarakkala S, Töyräs J, Kuikka J. Assessment of myocardial perfusion with MRI using a modified dual bolus method. Physiol Meas. 2014;35(4):533–47.CrossRef
15.
go back to reference Kaufmann PA, Camici PG. Myocardial blood flow measurement by PET: technical aspects and clinical applications. J Nucl Med. 2005;46(1):75–88.PubMed Kaufmann PA, Camici PG. Myocardial blood flow measurement by PET: technical aspects and clinical applications. J Nucl Med. 2005;46(1):75–88.PubMed
16.
go back to reference Rissanen TT, Nurro J, Halonen PJ, Tarkia M, Saraste A, Rannankari M, Honkonen K, Pietilä M, Leppänen O, Kuivanen A, Knuuti J, Ylä-Herttuala S. The bottleneck stent model for chronic myocardial ischemia and heart failure in pigs. Am J Physiol Heart Circ Physiol. 2013;305(9):H1297–308.CrossRef Rissanen TT, Nurro J, Halonen PJ, Tarkia M, Saraste A, Rannankari M, Honkonen K, Pietilä M, Leppänen O, Kuivanen A, Knuuti J, Ylä-Herttuala S. The bottleneck stent model for chronic myocardial ischemia and heart failure in pigs. Am J Physiol Heart Circ Physiol. 2013;305(9):H1297–308.CrossRef
17.
go back to reference Zaidi H, Ojha N, Morich M, Griesmer J, Hu Z, Maniawski P, Ratib O, Izquierdo-Garcia D, Fayad Z, Shao L. Design and performance evaluation of a whole-body ingenuity TF PET–MRI system. Phys Med Biol. 2011;56(10):3091–106.CrossRef Zaidi H, Ojha N, Morich M, Griesmer J, Hu Z, Maniawski P, Ratib O, Izquierdo-Garcia D, Fayad Z, Shao L. Design and performance evaluation of a whole-body ingenuity TF PET–MRI system. Phys Med Biol. 2011;56(10):3091–106.CrossRef
18.
go back to reference Rossi A, Uitterdijk A, Dijkshoorn M, Klotz E, Dharampal A, van Straten M, van der Giessen W, Mollet N, van Geuns R, Krestin G, Duncker D, de Feyter D, Merkus D. Quantification of myocardial blood flow by adenosine-stress CT perfusion imaging in pigs during various degrees of stenosis correlates well with coronary artery blood flow and fractional flow reserve. Eur Heart J Cardiovasc Imaging. 2013;14(4):331–8.CrossRef Rossi A, Uitterdijk A, Dijkshoorn M, Klotz E, Dharampal A, van Straten M, van der Giessen W, Mollet N, van Geuns R, Krestin G, Duncker D, de Feyter D, Merkus D. Quantification of myocardial blood flow by adenosine-stress CT perfusion imaging in pigs during various degrees of stenosis correlates well with coronary artery blood flow and fractional flow reserve. Eur Heart J Cardiovasc Imaging. 2013;14(4):331–8.CrossRef
19.
go back to reference Utz W, Niendorf T, Wassmuth R, Messroghli D, Dietz R, Schulz-Menger J. Contrast-dose relation in first-pass myocardial MR perfusion imaging. J Magn Reson Imaging. 2007;25(6):1131–5.CrossRef Utz W, Niendorf T, Wassmuth R, Messroghli D, Dietz R, Schulz-Menger J. Contrast-dose relation in first-pass myocardial MR perfusion imaging. J Magn Reson Imaging. 2007;25(6):1131–5.CrossRef
20.
go back to reference Nesterov SV, Han C, Mäki M, Kajander S, Naum AG, Helenius H, Lisinen I, Ukkonen H, Pietilä M, Joutsiniemi E, Knuuti J. Myocardial perfusion quantitation with 15O-labelled water PET: high reproducibility of the new cardiac analysis software (Carimas). Eur J Nucl Med Mol Imaging. 2009;36(10):1594–602.CrossRef Nesterov SV, Han C, Mäki M, Kajander S, Naum AG, Helenius H, Lisinen I, Ukkonen H, Pietilä M, Joutsiniemi E, Knuuti J. Myocardial perfusion quantitation with 15O-labelled water PET: high reproducibility of the new cardiac analysis software (Carimas). Eur J Nucl Med Mol Imaging. 2009;36(10):1594–602.CrossRef
21.
go back to reference Iida H, Rhodes CG, de Silva R, Araujo LI, Bloomfield PM, Lammertsma AA, Jones T. Use of the left ventricular time-activity curve as a noninvasive input function in dynamic oxygen-15-water positron emission tomography. J Nucl Med. 1992;33(9):1669–77.PubMed Iida H, Rhodes CG, de Silva R, Araujo LI, Bloomfield PM, Lammertsma AA, Jones T. Use of the left ventricular time-activity curve as a noninvasive input function in dynamic oxygen-15-water positron emission tomography. J Nucl Med. 1992;33(9):1669–77.PubMed
22.
go back to reference DiBella EVR, Parker DL, Sinusas AJ. On the dark rim artifact in dynamic contrast-enhanced MRI myocardial perfusion studies. Magn Reson Med. 2005;54(5):1295–9.CrossRef DiBella EVR, Parker DL, Sinusas AJ. On the dark rim artifact in dynamic contrast-enhanced MRI myocardial perfusion studies. Magn Reson Med. 2005;54(5):1295–9.CrossRef
23.
go back to reference Zierler KL. Equations for measuring blood flow by external monitoring of radioisotopes. Circ Res. 1965;16:309–21.CrossRef Zierler KL. Equations for measuring blood flow by external monitoring of radioisotopes. Circ Res. 1965;16:309–21.CrossRef
24.
go back to reference Bassingthwaighte JB, Ackerman FH. Mathematical linearity of circulatory transport. J Appl Physiol. 1967;22(5):879–88.CrossRef Bassingthwaighte JB, Ackerman FH. Mathematical linearity of circulatory transport. J Appl Physiol. 1967;22(5):879–88.CrossRef
25.
go back to reference Bertero M. Introduction to inverse problems in imaging. London: Institute of Physics publishing; 1998.CrossRef Bertero M. Introduction to inverse problems in imaging. London: Institute of Physics publishing; 1998.CrossRef
26.
go back to reference Kellman P, Aletras AH, Hsu LY, McVeigh ER, Arai AE. T2* measurement during first-pass contrast-enhanced cardiac perfusion imaging. Magn Reson Med. 2006;56(5):1132–4.CrossRef Kellman P, Aletras AH, Hsu LY, McVeigh ER, Arai AE. T2* measurement during first-pass contrast-enhanced cardiac perfusion imaging. Magn Reson Med. 2006;56(5):1132–4.CrossRef
27.
go back to reference Ishida M, Ichihara T, Nagata M, Ishida N, Takase S, Kurita T, Ito M, Takeda K, Sakuma H. Quantification of myocardial blood flow using model based analysis of first-pass perfusion MRI: extraction fraction of Gd-DTPA varies with myocardial blood flow in human myocardium. Magn Reson Med. 2011;66(5):1391–9.CrossRef Ishida M, Ichihara T, Nagata M, Ishida N, Takase S, Kurita T, Ito M, Takeda K, Sakuma H. Quantification of myocardial blood flow using model based analysis of first-pass perfusion MRI: extraction fraction of Gd-DTPA varies with myocardial blood flow in human myocardium. Magn Reson Med. 2011;66(5):1391–9.CrossRef
28.
go back to reference Motwani M, Kidambi A, Uddin A, Sourbron S, Greenwood J, Plein S. Quantification of myocardial blood flow with cardiovascular magnetic resonance throughout the cardiac cycle. J. Cardiovasc. Magn. Reson. 2015;17(4):1–9. Motwani M, Kidambi A, Uddin A, Sourbron S, Greenwood J, Plein S. Quantification of myocardial blood flow with cardiovascular magnetic resonance throughout the cardiac cycle. J. Cardiovasc. Magn. Reson. 2015;17(4):1–9.
29.
go back to reference Schuster A. Quantitative assessment of magnetic resonance derived myocardial perfusion measurements using advanced techniques: microsphere validation in an explanted pig heart system. J Cardiovasc Magn Reson. 2014;16:82.CrossRef Schuster A. Quantitative assessment of magnetic resonance derived myocardial perfusion measurements using advanced techniques: microsphere validation in an explanted pig heart system. J Cardiovasc Magn Reson. 2014;16:82.CrossRef
30.
go back to reference Morton G, Chiribiri A, Ishida M, Hussain ST, Schuster A, Indermuehle A, Perera D, Knuuti J, Baker S, Hedstrom E, Schleyer P, O'Doherty M, Barrington S, Nagel E. Quantification of absolute myocardial perfusion in patients with coronary artery disease: comparison between cardiovascular magnetic resonance and positron emission tomography. J. Am. Coll. Cardiol. 2012;60(16):1546–55.CrossRef Morton G, Chiribiri A, Ishida M, Hussain ST, Schuster A, Indermuehle A, Perera D, Knuuti J, Baker S, Hedstrom E, Schleyer P, O'Doherty M, Barrington S, Nagel E. Quantification of absolute myocardial perfusion in patients with coronary artery disease: comparison between cardiovascular magnetic resonance and positron emission tomography. J. Am. Coll. Cardiol. 2012;60(16):1546–55.CrossRef
31.
go back to reference Schöffmann G, Winter P, Palme R, Pollak A, Trittenwein G, Golej J. Haemodynamic changes and stress responses of piglets to surgery during total intravenous anaesthesia with propofol and fentanyl. Lab Anim. 2009;43(3):243–8.CrossRef Schöffmann G, Winter P, Palme R, Pollak A, Trittenwein G, Golej J. Haemodynamic changes and stress responses of piglets to surgery during total intravenous anaesthesia with propofol and fentanyl. Lab Anim. 2009;43(3):243–8.CrossRef
32.
go back to reference Gebker R, Paetsch I, Neuss M, Schnackenburg B, Bornstedt A, Jahnke C, Gomaa O, Fleck E, Nagel E. Determinants of myocardial response in CMR perfusion imaging using Gd-BOPTA (Multihance). J Cardiovasc Magn Reson. 2005;7(3):565–72.CrossRef Gebker R, Paetsch I, Neuss M, Schnackenburg B, Bornstedt A, Jahnke C, Gomaa O, Fleck E, Nagel E. Determinants of myocardial response in CMR perfusion imaging using Gd-BOPTA (Multihance). J Cardiovasc Magn Reson. 2005;7(3):565–72.CrossRef
33.
go back to reference Braunwald E, Sarnoff SJ, Stainsby WN. Determinants of duration and mean rate of ventricular ejection. Circ Res. 1958;6(3):319–25.CrossRef Braunwald E, Sarnoff SJ, Stainsby WN. Determinants of duration and mean rate of ventricular ejection. Circ Res. 1958;6(3):319–25.CrossRef
34.
35.
go back to reference Weissler AM, Peeler RG, Roehll WHJ. Relationships between left ventricular ejection time, stroke volume, and heart rate in normal individuals and patients with cardiovascular disease. Am Heart J. 1961;62:367–78.CrossRef Weissler AM, Peeler RG, Roehll WHJ. Relationships between left ventricular ejection time, stroke volume, and heart rate in normal individuals and patients with cardiovascular disease. Am Heart J. 1961;62:367–78.CrossRef
36.
go back to reference Rerych SK, Scholz PM, Newman GE, Sabiston DC, Jones RH. Cardiac function at rest and during exercise in normals and in patients with coronary heart disease: evaluation by radionuclide angiocardiography. Ann Surg. 1978;187(5):449–64.CrossRef Rerych SK, Scholz PM, Newman GE, Sabiston DC, Jones RH. Cardiac function at rest and during exercise in normals and in patients with coronary heart disease: evaluation by radionuclide angiocardiography. Ann Surg. 1978;187(5):449–64.CrossRef
37.
go back to reference Rodeheffer RJ, Gerstenblith G, Becker LC, Fleg JL, Weisfeldt ML, Lakatta EG. Exercise cardiac output is maintained with advancing age in healthy human subjects: cardiac dilatation and increased stroke volume compensate for a diminished heart rate. Circulation. 1984;69(2):203–13.CrossRef Rodeheffer RJ, Gerstenblith G, Becker LC, Fleg JL, Weisfeldt ML, Lakatta EG. Exercise cardiac output is maintained with advancing age in healthy human subjects: cardiac dilatation and increased stroke volume compensate for a diminished heart rate. Circulation. 1984;69(2):203–13.CrossRef
Metadata
Title
Quantification of porcine myocardial perfusion with modified dual bolus MRI – a prospective study with a PET reference
Authors
Minna Husso
Mikko J. Nissi
Antti Kuivanen
Paavo Halonen
Miikka Tarkia
Jarmo Teuho
Virva Saunavaara
Pauli Vainio
Petri Sipola
Hannu Manninen
Seppo Ylä-Herttuala
Juhani Knuuti
Juha Töyräs
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2019
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/s12880-019-0359-8

Other articles of this Issue 1/2019

BMC Medical Imaging 1/2019 Go to the issue