Skip to main content
Top
Published in: BMC Medical Imaging 1/2019

Open Access 01-12-2019 | Prostate Cancer | Research article

Comparing radiomic classifiers and classifier ensembles for detection of peripheral zone prostate tumors on T2-weighted MRI: a multi-site study

Authors: Satish E. Viswanath, Prathyush V. Chirra, Michael C. Yim, Neil M. Rofsky, Andrei S. Purysko, Mark A. Rosen, B Nicolas Bloch, Anant Madabhushi

Published in: BMC Medical Imaging | Issue 1/2019

Login to get access

Abstract

Background

For most computer-aided diagnosis (CAD) problems involving prostate cancer detection via medical imaging data, the choice of classifier has been largely ad hoc, or been motivated by classifier comparison studies that have involved large synthetic datasets. More significantly, it is currently unknown how classifier choices and trends generalize across multiple institutions, due to heterogeneous acquisition and intensity characteristics (especially when considering MR imaging data). In this work, we empirically evaluate and compare a number of different classifiers and classifier ensembles in a multi-site setting, for voxel-wise detection of prostate cancer (PCa) using radiomic texture features derived from high-resolution in vivo T2-weighted (T2w) MRI.

Methods

Twelve different supervised classifier schemes: Quadratic Discriminant Analysis (QDA), Support Vector Machines (SVMs), naïve Bayes, Decision Trees (DTs), and their ensemble variants (bagging, boosting), were compared in terms of classification accuracy as well as execution time. Our study utilized 85 prostate cancer T2w MRI datasets acquired from across 3 different institutions (1 for discovery, 2 for independent validation), from patients who later underwent radical prostatectomy. Surrogate ground truth for disease extent on MRI was established by expert annotation of pre-operative MRI through spatial correlation with corresponding ex vivo whole-mount histology sections. Classifier accuracy in detecting PCa extent on MRI on a per-voxel basis was evaluated via area under the ROC curve.

Results

The boosted DT classifier yielded the highest cross-validated AUC (= 0.744) for detecting PCa in the discovery cohort. However, in independent validation, the boosted QDA classifier was identified as the most accurate and robust for voxel-wise detection of PCa extent (AUCs of 0.735, 0.683, 0.768 across the 3 sites). The next most accurate and robust classifier was the single QDA classifier, which also enjoyed the advantage of significantly lower computation times compared to any of the other methods.

Conclusions

Our results therefore suggest that simpler classifiers (such as QDA and its ensemble variants) may be more robust, accurate, and efficient for prostate cancer CAD problems, especially in the context of multi-site validation.
Literature
1.
go back to reference Wu B, Abbott T, Fishman D, McMurray W, Mor G, Stone K, Ward D, Williams K, Zhao H. Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data. Bioinform. 2003; 19(13):1636–43. Wu B, Abbott T, Fishman D, McMurray W, Mor G, Stone K, Ward D, Williams K, Zhao H. Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data. Bioinform. 2003; 19(13):1636–43.
2.
go back to reference Larranaga P, Calvo B, Santana R, Bielza C, Galdiano J, Inza I, Lozano J, Armananzas R, Santafe G, Perez A, Robles V. Machine learning in bioinformatics. Brief Bioinform. 2006; 7(1):86–112.PubMed Larranaga P, Calvo B, Santana R, Bielza C, Galdiano J, Inza I, Lozano J, Armananzas R, Santafe G, Perez A, Robles V. Machine learning in bioinformatics. Brief Bioinform. 2006; 7(1):86–112.PubMed
3.
go back to reference Juntu J, Sijbers J, De Backer S, Rajan J, Van Dyck D. Machine learning study of several classifiers trained with texture analysis features to differentiate benign from malignant soft-tissue tumors in T1-MRI images. J Magn Reson Imaging. 2010; 31(3):680–9.PubMed Juntu J, Sijbers J, De Backer S, Rajan J, Van Dyck D. Machine learning study of several classifiers trained with texture analysis features to differentiate benign from malignant soft-tissue tumors in T1-MRI images. J Magn Reson Imaging. 2010; 31(3):680–9.PubMed
4.
go back to reference Wei L, Yang Y, Nishikawa RM, Jiang Y. A study on several machine-learning methods for classification of malignant and benign clustered microcalcifications. IEEE Trans Med Imaging. 2005; 24(3):371–80.PubMed Wei L, Yang Y, Nishikawa RM, Jiang Y. A study on several machine-learning methods for classification of malignant and benign clustered microcalcifications. IEEE Trans Med Imaging. 2005; 24(3):371–80.PubMed
5.
go back to reference Herlidou-Meme S, Constans JM, Carsin B, Olivie D, Eliat PA, Nadal-Desbarats L, Gondry C, Le Rumeur E, Idy-Peretti I, de Certaines JD. MRI texture analysis on texture test objects, normal brain and intracranial tumors. Magn Reson Imaging. 2003; 21(9):989–93.PubMed Herlidou-Meme S, Constans JM, Carsin B, Olivie D, Eliat PA, Nadal-Desbarats L, Gondry C, Le Rumeur E, Idy-Peretti I, de Certaines JD. MRI texture analysis on texture test objects, normal brain and intracranial tumors. Magn Reson Imaging. 2003; 21(9):989–93.PubMed
6.
go back to reference Monaco JP, Tomaszewski JE, Feldman MD, Hagemann I, Moradi M, Mousavi P, Boag A, Davidson C, Abolmaesumi P, Madabhushi A. High-throughput detection of prostate cancer in histological sections using probabilistic pairwise Markov models. Med Image Anal. 2010; 14(4):617–29.PubMedPubMedCentral Monaco JP, Tomaszewski JE, Feldman MD, Hagemann I, Moradi M, Mousavi P, Boag A, Davidson C, Abolmaesumi P, Madabhushi A. High-throughput detection of prostate cancer in histological sections using probabilistic pairwise Markov models. Med Image Anal. 2010; 14(4):617–29.PubMedPubMedCentral
7.
go back to reference Prasanna P, Tiwari P, Madabhushi A. Co-occurrence of local anisotropic gradient orientations (collage): a new radiomics descriptor. Scientific Reports. 2016; 6:37241.PubMedPubMedCentral Prasanna P, Tiwari P, Madabhushi A. Co-occurrence of local anisotropic gradient orientations (collage): a new radiomics descriptor. Scientific Reports. 2016; 6:37241.PubMedPubMedCentral
8.
go back to reference Breiman L. Bagging predictors. Mach Learn. 1996; 24(2):123–40. Breiman L. Bagging predictors. Mach Learn. 1996; 24(2):123–40.
9.
go back to reference Freund Y, Schapire R. Experiments with a New Boosting Algorithm. In: Proc Int’l Conf Mach Learn.San Francisco: Morgan Kaufmann Publishers Inc.: 1996. p. 148–56. Freund Y, Schapire R. Experiments with a New Boosting Algorithm. In: Proc Int’l Conf Mach Learn.San Francisco: Morgan Kaufmann Publishers Inc.: 1996. p. 148–56.
10.
go back to reference Dietterich T. Ensemble Methods in Machine Learning. In: Proc 1st Intl Workshop Mult Class Systems.Berlin: Springer Berlin Heidelberg: 2000. p. 1–15. Dietterich T. Ensemble Methods in Machine Learning. In: Proc 1st Intl Workshop Mult Class Systems.Berlin: Springer Berlin Heidelberg: 2000. p. 1–15.
11.
go back to reference Lim T-S, Loh W-Y, Shih Y-S. A Comparison of Prediction Accuracy, Complexity, and Training Time of Thirty-Three Old and New Classification Algorithms. Mach Learn. 2000; 40(3):203–28. Lim T-S, Loh W-Y, Shih Y-S. A Comparison of Prediction Accuracy, Complexity, and Training Time of Thirty-Three Old and New Classification Algorithms. Mach Learn. 2000; 40(3):203–28.
12.
go back to reference Bauer E, Kohavi R. An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants. Mach Learn. 1999; 36(1):105–39. Bauer E, Kohavi R. An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants. Mach Learn. 1999; 36(1):105–39.
13.
go back to reference Tran QL, Toh KA, Srinivasan D, Wong KL, Shaun Qiu-Cen L. An empirical comparison of nine pattern classifiers. IEEE Trans Sys Man Cybernet. 2005; 35(5):1079–91. Tran QL, Toh KA, Srinivasan D, Wong KL, Shaun Qiu-Cen L. An empirical comparison of nine pattern classifiers. IEEE Trans Sys Man Cybernet. 2005; 35(5):1079–91.
14.
go back to reference Dietterich TG. An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization. Mach Learn. 2000; 40(2):139–57. Dietterich TG. An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization. Mach Learn. 2000; 40(2):139–57.
15.
go back to reference Hamza M, Larocque D. An empirical comparison of ensemble methods based on classification trees. JSCS. 2005; 75(8):629–43. Hamza M, Larocque D. An empirical comparison of ensemble methods based on classification trees. JSCS. 2005; 75(8):629–43.
16.
go back to reference Opitz D, Maclin R. Popular ensemble methods: An empirical study. JAIR. 1999; 11(1):169–98. Opitz D, Maclin R. Popular ensemble methods: An empirical study. JAIR. 1999; 11(1):169–98.
18.
go back to reference Fernández-Delgado M, Cernadas E, Barro S, Amorim D. Do we need hundreds of classifiers to solve real world classification problems?J Mach Learn Res. 2014; 15:3133–81. Fernández-Delgado M, Cernadas E, Barro S, Amorim D. Do we need hundreds of classifiers to solve real world classification problems?J Mach Learn Res. 2014; 15:3133–81.
19.
go back to reference Schmah T, Yourganov G, Zemel RS, Hinton GE, Small SL, Strother SC. Comparing classification methods for longitudinal fMRI studies. Neural Comput. 2010; 22(11):2729–62.PubMed Schmah T, Yourganov G, Zemel RS, Hinton GE, Small SL, Strother SC. Comparing classification methods for longitudinal fMRI studies. Neural Comput. 2010; 22(11):2729–62.PubMed
21.
go back to reference Parmar C, Grossmann P, Rietveld D, Rietbergen MM, Lambin P, Aerts HJWL. Radiomic machine-learning classifiers for prognostic biomarkers of head and neck cancer. Front Oncol. 2015; 5:272.PubMedPubMedCentral Parmar C, Grossmann P, Rietveld D, Rietbergen MM, Lambin P, Aerts HJWL. Radiomic machine-learning classifiers for prognostic biomarkers of head and neck cancer. Front Oncol. 2015; 5:272.PubMedPubMedCentral
22.
go back to reference Lemaître G, Martí R, Freixenet J, Vilanova JC, Walker PM, Meriaudeau F. Computer-aided detection and diagnosis for prostate cancer based on mono and multi-parametric mri: A review. Comput Biol Med. 2015; 60:8–31.PubMed Lemaître G, Martí R, Freixenet J, Vilanova JC, Walker PM, Meriaudeau F. Computer-aided detection and diagnosis for prostate cancer based on mono and multi-parametric mri: A review. Comput Biol Med. 2015; 60:8–31.PubMed
23.
go back to reference McLachlan GJ. Discriminant Analysis and Statistical Pattern Recognition. Hoboken, N.J.: Wiley-Interscience; 2004. McLachlan GJ. Discriminant Analysis and Statistical Pattern Recognition. Hoboken, N.J.: Wiley-Interscience; 2004.
24.
go back to reference Vapnik VN. An overview of statistical learning theory. IEEE Trans Neural Netw. 1999; 10(5):988–99.PubMed Vapnik VN. An overview of statistical learning theory. IEEE Trans Neural Netw. 1999; 10(5):988–99.PubMed
25.
go back to reference Duda RO, Hart PE, Stork DG. Pattern Classification, 2nd edn.New York: Wiley; 2001. Duda RO, Hart PE, Stork DG. Pattern Classification, 2nd edn.New York: Wiley; 2001.
26.
go back to reference Quinlan J. C4.5: Programs for Machine Learning.San Francisco: Morgan Kaufmann Publishers Inc.; 1993. Quinlan J. C4.5: Programs for Machine Learning.San Francisco: Morgan Kaufmann Publishers Inc.; 1993.
27.
go back to reference Chappelow J, Bloch BN, Rofsky N, Genega E, Lenkinski R, DeWolf W, Madabhushi A. Elastic registration of multimodal prostate mri and histology via multiattribute combined mutual information. Med Phys. 2011; 38(4):2005–18.PubMedPubMedCentral Chappelow J, Bloch BN, Rofsky N, Genega E, Lenkinski R, DeWolf W, Madabhushi A. Elastic registration of multimodal prostate mri and histology via multiattribute combined mutual information. Med Phys. 2011; 38(4):2005–18.PubMedPubMedCentral
28.
go back to reference Schiebler ML, Schnall MD, Pollack HM, Lenkinski RE, Tomaszewski JE, Wein AJ, Whittington R, Rauschning W, Kressel HY. Current role of MR imaging in the staging of adenocarcinoma of the prostate. Radiology. 1993; 189(2):339–52.PubMed Schiebler ML, Schnall MD, Pollack HM, Lenkinski RE, Tomaszewski JE, Wein AJ, Whittington R, Rauschning W, Kressel HY. Current role of MR imaging in the staging of adenocarcinoma of the prostate. Radiology. 1993; 189(2):339–52.PubMed
29.
go back to reference Nyúl LG, Udupa JK, Zhang X. New variants of a method of mri scale standardization. IEEE Trans Med Imaging. 2000; 19(2):143–50.PubMed Nyúl LG, Udupa JK, Zhang X. New variants of a method of mri scale standardization. IEEE Trans Med Imaging. 2000; 19(2):143–50.PubMed
30.
go back to reference Madabhushi A, Feldman MD, Metaxas DN, Tomaszeweski J, Chute D. Automated detection of prostatic adenocarcinoma from high-resolution ex vivo MRI. IEEE Trans Med Imaging. 2005; 24(12):1611–25.PubMed Madabhushi A, Feldman MD, Metaxas DN, Tomaszeweski J, Chute D. Automated detection of prostatic adenocarcinoma from high-resolution ex vivo MRI. IEEE Trans Med Imaging. 2005; 24(12):1611–25.PubMed
31.
go back to reference Sled JG, Zijdenbos AP, Evans AC. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging. 1998; 17(1):87–97.PubMed Sled JG, Zijdenbos AP, Evans AC. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging. 1998; 17(1):87–97.PubMed
32.
go back to reference Ginsburg SB, Algohary A, Pahwa S, Gulani V, Ponsky L, Aronen HJ, Boström PJ, Böhm M, Haynes A. -M., Brenner P, et al.Radiomic features for prostate cancer detection on mri differ between the transition and peripheral zones: Preliminary findings from a multi-institutional study. J Magn Reson Imaging. 2017; 46(1):184–93.PubMed Ginsburg SB, Algohary A, Pahwa S, Gulani V, Ponsky L, Aronen HJ, Boström PJ, Böhm M, Haynes A. -M., Brenner P, et al.Radiomic features for prostate cancer detection on mri differ between the transition and peripheral zones: Preliminary findings from a multi-institutional study. J Magn Reson Imaging. 2017; 46(1):184–93.PubMed
33.
go back to reference Viswanath SE, Bloch NB, Chappelow JC, Toth R, Rofsky NM, Genega EM, Lenkinski RE, Madabhushi A. Central gland and peripheral zone prostate tumors have significantly different quantitative imaging signatures on 3 tesla endorectal, in vivo t2-weighted mr imagery. J Magn Reson Imaging. 2012; 36(1):213–24.PubMedPubMedCentral Viswanath SE, Bloch NB, Chappelow JC, Toth R, Rofsky NM, Genega EM, Lenkinski RE, Madabhushi A. Central gland and peripheral zone prostate tumors have significantly different quantitative imaging signatures on 3 tesla endorectal, in vivo t2-weighted mr imagery. J Magn Reson Imaging. 2012; 36(1):213–24.PubMedPubMedCentral
34.
go back to reference Bovik AC, Clark M, Geisler WS. Multichannel texture analysis using localized spatial filters. IEEE Trans Pattern Anal Mach Intell. 1990; 12(1):55–73. Bovik AC, Clark M, Geisler WS. Multichannel texture analysis using localized spatial filters. IEEE Trans Pattern Anal Mach Intell. 1990; 12(1):55–73.
35.
go back to reference Busch C. Wavelet based texture segmentation of multi-modal tomographic images. Comput Graph. 1997; 21(3):347–58. Busch C. Wavelet based texture segmentation of multi-modal tomographic images. Comput Graph. 1997; 21(3):347–58.
36.
go back to reference Russ JC. The Image Processing Handbook, 5th edn.Boca Raton: CRC Press Inc.; 2007. Russ JC. The Image Processing Handbook, 5th edn.Boca Raton: CRC Press Inc.; 2007.
37.
go back to reference Haralick RM, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Trans Sys Man Cybernet. 1973; 3(6):610–21. Haralick RM, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Trans Sys Man Cybernet. 1973; 3(6):610–21.
38.
go back to reference Peng H, Long F, Ding C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell. 2005; 27(8):1226–38.PubMed Peng H, Long F, Ding C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell. 2005; 27(8):1226–38.PubMed
39.
go back to reference Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res. 2003; 3:1157–82. Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res. 2003; 3:1157–82.
42.
go back to reference Platt J. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Adv Large Margin Classifiers. 1999; 10(3):61–74. Platt J. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Adv Large Margin Classifiers. 1999; 10(3):61–74.
43.
go back to reference Rampun A, Zheng L, Malcolm P, Tiddeman B, Zwiggelaar R. Computer-aided detection of prostate cancer in t2-weighted mri within the peripheral zone. Phys Med Biol. 2016; 61(13):4796–825.PubMed Rampun A, Zheng L, Malcolm P, Tiddeman B, Zwiggelaar R. Computer-aided detection of prostate cancer in t2-weighted mri within the peripheral zone. Phys Med Biol. 2016; 61(13):4796–825.PubMed
44.
go back to reference Demsar J. Statistical comparisons of classifiers over multiple data sets. JMLR. 2006; 7:1–30. Demsar J. Statistical comparisons of classifiers over multiple data sets. JMLR. 2006; 7:1–30.
45.
go back to reference Breiman L. Arcing classifiers. Ann Stat. 1998; 26(3):801–24. Breiman L. Arcing classifiers. Ann Stat. 1998; 26(3):801–24.
46.
go back to reference Waugh SA, Lerski RA, Bidaut L, Thompson AM. The influence of field strength and different clinical breast mri protocols on the outcome of texture analysis using foam phantoms. Med Phys. 2011; 38(9):5058–66.PubMed Waugh SA, Lerski RA, Bidaut L, Thompson AM. The influence of field strength and different clinical breast mri protocols on the outcome of texture analysis using foam phantoms. Med Phys. 2011; 38(9):5058–66.PubMed
47.
go back to reference Hoang Dinh A, Melodelima C, Souchon R, Lehaire J, Bratan F, Mège-Lechevallier F, Ruffion A, Crouzet S, Colombel M, Rouvière O. Quantitative analysis of prostate multiparametric mr images for detection of aggressive prostate cancer in the peripheral zone: a multiple imager study. Radiology. 2016; 280(1):117–27.PubMed Hoang Dinh A, Melodelima C, Souchon R, Lehaire J, Bratan F, Mège-Lechevallier F, Ruffion A, Crouzet S, Colombel M, Rouvière O. Quantitative analysis of prostate multiparametric mr images for detection of aggressive prostate cancer in the peripheral zone: a multiple imager study. Radiology. 2016; 280(1):117–27.PubMed
48.
go back to reference Artan Y, Oto A, Yetik IS. Cross-device automated prostate cancer localization with multiparametric mri. IEEE Trans Image Process. 2013; 22(12):5385–94.PubMed Artan Y, Oto A, Yetik IS. Cross-device automated prostate cancer localization with multiparametric mri. IEEE Trans Image Process. 2013; 22(12):5385–94.PubMed
50.
go back to reference Yousef M, Nebozhyn M, Shatkay H, Kanterakis S, Showe LC, Showe MK. Combining multi-species genomic data for microRNA identification using a Naive Bayes classifier. Bioinform. 2006; 22(11):1325–34. Yousef M, Nebozhyn M, Shatkay H, Kanterakis S, Showe LC, Showe MK. Combining multi-species genomic data for microRNA identification using a Naive Bayes classifier. Bioinform. 2006; 22(11):1325–34.
51.
go back to reference Tu Z. Probabilistic boosting-tree: learning discriminative models for classification, recognition, and clustering. In: Proc Tenth IEEE ICCV. Washington, DC: IEEE Computer Society: 2005. p. 1589–96. Tu Z. Probabilistic boosting-tree: learning discriminative models for classification, recognition, and clustering. In: Proc Tenth IEEE ICCV. Washington, DC: IEEE Computer Society: 2005. p. 1589–96.
Metadata
Title
Comparing radiomic classifiers and classifier ensembles for detection of peripheral zone prostate tumors on T2-weighted MRI: a multi-site study
Authors
Satish E. Viswanath
Prathyush V. Chirra
Michael C. Yim
Neil M. Rofsky
Andrei S. Purysko
Mark A. Rosen
B Nicolas Bloch
Anant Madabhushi
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2019
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/s12880-019-0308-6

Other articles of this Issue 1/2019

BMC Medical Imaging 1/2019 Go to the issue