Skip to main content
Top
Published in: BMC Medical Imaging 1/2018

Open Access 01-12-2018 | Research article

Joint sparse reconstruction of multi-contrast MRI images with graph based redundant wavelet transform

Authors: Zongying Lai, Xinlin Zhang, Di Guo, Xiaofeng Du, Yonggui Yang, Gang Guo, Zhong Chen, Xiaobo Qu

Published in: BMC Medical Imaging | Issue 1/2018

Login to get access

Abstract

Background

Multi-contrast images in magnetic resonance imaging (MRI) provide abundant contrast information reflecting the characteristics of the internal tissues of human bodies, and thus have been widely utilized in clinical diagnosis. However, long acquisition time limits the application of multi-contrast MRI. One efficient way to accelerate data acquisition is to under-sample the k-space data and then reconstruct images with sparsity constraint. However, images are compromised at high acceleration factor if images are reconstructed individually. We aim to improve the images with a jointly sparse reconstruction and Graph-based redundant wavelet transform (GBRWT).

Methods

First, a sparsifying transform, GBRWT, is trained to reflect the similarity of tissue structures in multi-contrast images. Second, joint multi-contrast image reconstruction is formulated as a ℓ2, 1 norm optimization problem under GBRWT representations. Third, the optimization problem is numerically solved using a derived alternating direction method.

Results

Experimental results in synthetic and in vivo MRI data demonstrate that the proposed joint reconstruction method can achieve lower reconstruction errors and better preserve image structures than the compared joint reconstruction methods. Besides, the proposed method outperforms single image reconstruction with joint sparsity constraint of multi-contrast images.

Conclusions

The proposed method explores the joint sparsity of multi-contrast MRI images under graph-based redundant wavelet transform and realizes joint sparse reconstruction of multi-contrast images. Experiment demonstrate that the proposed method outperforms the compared joint reconstruction methods as well as individual reconstructions. With this high quality image reconstruction method, it is possible to achieve the high acceleration factors by exploring the complementary information provided by multi-contrast MRI.
Literature
1.
go back to reference Lustig M, Donoho DL, M. Santos J, Pauly JM. Compressed sensing MRI. IEEE Signal Process Mag. 2008;72:72–82.CrossRef Lustig M, Donoho DL, M. Santos J, Pauly JM. Compressed sensing MRI. IEEE Signal Process Mag. 2008;72:72–82.CrossRef
2.
go back to reference Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med. 2007;58(6):1182–95.CrossRefPubMed Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med. 2007;58(6):1182–95.CrossRefPubMed
3.
go back to reference Li E, Khalvati F, Shafiee MJ, Haider MA, Wong A. Sparse reconstruction of compressive sensing MRI using cross-domain stochastically fully connected conditional random fields. BMC Med Imaging. 2016;16(1):51.CrossRefPubMedPubMedCentral Li E, Khalvati F, Shafiee MJ, Haider MA, Wong A. Sparse reconstruction of compressive sensing MRI using cross-domain stochastically fully connected conditional random fields. BMC Med Imaging. 2016;16(1):51.CrossRefPubMedPubMedCentral
4.
go back to reference Yang BX, Yuan M, Ma YD, Zhang JW, Zhan K. Local sparsity enhanced compressed sensing magnetic resonance imaging in uniform discrete curvelet domain. BMC Med Imaging. 2015;15(1):28.CrossRefPubMedPubMedCentral Yang BX, Yuan M, Ma YD, Zhang JW, Zhan K. Local sparsity enhanced compressed sensing magnetic resonance imaging in uniform discrete curvelet domain. BMC Med Imaging. 2015;15(1):28.CrossRefPubMedPubMedCentral
5.
go back to reference Liu Y, Zhan Z, Cai J-F, Guo D, Chen Z, Qu X. Projected iterative soft-thresholding algorithm for tight frames in compressed sensing magnetic resonance imaging. IEEE Trans Med Imaging. 2016;35:2130–40.CrossRef Liu Y, Zhan Z, Cai J-F, Guo D, Chen Z, Qu X. Projected iterative soft-thresholding algorithm for tight frames in compressed sensing magnetic resonance imaging. IEEE Trans Med Imaging. 2016;35:2130–40.CrossRef
6.
go back to reference Lai Z, Qu X, Lu H, Peng X, Guo D, Yang Y, Guo G, Chen Z. Sparse MRI reconstruction using multi-contrast image guided graph representation. Magn Reson Imaging. 2017;43:95–104.CrossRefPubMed Lai Z, Qu X, Lu H, Peng X, Guo D, Yang Y, Guo G, Chen Z. Sparse MRI reconstruction using multi-contrast image guided graph representation. Magn Reson Imaging. 2017;43:95–104.CrossRefPubMed
7.
go back to reference Lai Z, Qu X, Liu Y, Guo D, Ye J, Zhan Z, Chen Z. Image reconstruction of compressed sensing MRI using graph-based redundant wavelet transform. Med Image Anal. 2016;27:93–104.CrossRefPubMed Lai Z, Qu X, Liu Y, Guo D, Ye J, Zhan Z, Chen Z. Image reconstruction of compressed sensing MRI using graph-based redundant wavelet transform. Med Image Anal. 2016;27:93–104.CrossRefPubMed
8.
go back to reference Huang J, Chen C, Axel L. Fast multi-contrast MRI reconstruction. Magn Reson Imaging. 2014;32(10):1344–52.CrossRefPubMed Huang J, Chen C, Axel L. Fast multi-contrast MRI reconstruction. Magn Reson Imaging. 2014;32(10):1344–52.CrossRefPubMed
9.
go back to reference Majumdar A, Ward RK. Joint reconstruction of multiecho MR images using correlated sparsity. Magn Reson Imaging. 2011;29(7):899–906.CrossRefPubMed Majumdar A, Ward RK. Joint reconstruction of multiecho MR images using correlated sparsity. Magn Reson Imaging. 2011;29(7):899–906.CrossRefPubMed
10.
go back to reference Zheng H, Qu X, Bai Z, Liu Y, Guo D, Dong J, Peng X, Chen Z. Multi-contrast brain magnetic resonance image super-resolution using the local weight similarity. BMC Med Imaging. 2017;17(1):6.CrossRefPubMedPubMedCentral Zheng H, Qu X, Bai Z, Liu Y, Guo D, Dong J, Peng X, Chen Z. Multi-contrast brain magnetic resonance image super-resolution using the local weight similarity. BMC Med Imaging. 2017;17(1):6.CrossRefPubMedPubMedCentral
11.
go back to reference Peng X, Ying L, Liu Y, Yuan J, Liu X, Liang D. Accelerated exponential parameterization of T2 relaxation with model-driven low rank and sparsity priors (MORASA). Magn Reson Med. 2016;76(6):1865–78.CrossRefPubMed Peng X, Ying L, Liu Y, Yuan J, Liu X, Liang D. Accelerated exponential parameterization of T2 relaxation with model-driven low rank and sparsity priors (MORASA). Magn Reson Med. 2016;76(6):1865–78.CrossRefPubMed
12.
go back to reference Harmouche R, Cheriet F, Labelle H, Dansereau J. Multimodal image registration of the scoliotic torso for surgical planning. BMC Med Imaging. 2013;13(1):1.CrossRefPubMedPubMedCentral Harmouche R, Cheriet F, Labelle H, Dansereau J. Multimodal image registration of the scoliotic torso for surgical planning. BMC Med Imaging. 2013;13(1):1.CrossRefPubMedPubMedCentral
13.
go back to reference Zhan Z, Cai JF, Guo D, Liu Y, Chen Z, Qu X. Fast multiclass dictionaries learning with geometrical directions in MRI reconstruction. IEEE Trans Biomed Eng. 2016;63(9):1850–61.CrossRefPubMed Zhan Z, Cai JF, Guo D, Liu Y, Chen Z, Qu X. Fast multiclass dictionaries learning with geometrical directions in MRI reconstruction. IEEE Trans Biomed Eng. 2016;63(9):1850–61.CrossRefPubMed
14.
go back to reference Ravishankar S, Bresler Y. MR image reconstruction from highly undersampled k-space fata by dictionary learning. IEEE Trans Med Imaging. 2011;30(5):1028–41.CrossRefPubMed Ravishankar S, Bresler Y. MR image reconstruction from highly undersampled k-space fata by dictionary learning. IEEE Trans Med Imaging. 2011;30(5):1028–41.CrossRefPubMed
15.
go back to reference Qu X, Hou Y, Lam F, Guo D, Zhong J, Chen Z. Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator. Med Image Anal. 2014;18(6):843–56.CrossRefPubMed Qu X, Hou Y, Lam F, Guo D, Zhong J, Chen Z. Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator. Med Image Anal. 2014;18(6):843–56.CrossRefPubMed
16.
go back to reference Qu X, Guo D, Ning B, Hou Y, Lin Y, Cai S, Chen Z. Undersampled MRI reconstruction with patch-based directional wavelets. Magn Reson Imaging. 2012;30(7):964–77.CrossRefPubMed Qu X, Guo D, Ning B, Hou Y, Lin Y, Cai S, Chen Z. Undersampled MRI reconstruction with patch-based directional wavelets. Magn Reson Imaging. 2012;30(7):964–77.CrossRefPubMed
17.
go back to reference Baker CA, King K, Dong L, Leslie Y: Translational-invariant dictionaries for compressed sensing in magnetic resonance imaging. In: IEEE International Symposium on Biomedical Imaging: from nano to macro: March 30–April 2 2011: 1602–1605. Baker CA, King K, Dong L, Leslie Y: Translational-invariant dictionaries for compressed sensing in magnetic resonance imaging. In: IEEE International Symposium on Biomedical Imaging: from nano to macro: March 30–April 2 2011: 1602–1605.
18.
go back to reference Yang J, Zhang Y, Yin W. A fast alternating direction method for TVL1-L2 signal reconstruction from partial fourier data. IEEE J Selected Topics Signal Processing. 2010;4(2):288–97.CrossRef Yang J, Zhang Y, Yin W. A fast alternating direction method for TVL1-L2 signal reconstruction from partial fourier data. IEEE J Selected Topics Signal Processing. 2010;4(2):288–97.CrossRef
20.
go back to reference Ram I, Elad M, Cohen I. Image processing using smooth ordering of its patches. IEEE Trans Image Process. 2013;22(7):2764–74.CrossRefPubMed Ram I, Elad M, Cohen I. Image processing using smooth ordering of its patches. IEEE Trans Image Process. 2013;22(7):2764–74.CrossRefPubMed
21.
go back to reference Huang J, Zhang T. The benefit of group sparsity. Ann Stat. 2010;38(4):1978–2004.CrossRef Huang J, Zhang T. The benefit of group sparsity. Ann Stat. 2010;38(4):1978–2004.CrossRef
22.
go back to reference Eldar YC, Kuppinger P, Bolcskei H. Block-sparse signals: uncertainty relations and efficient recovery. IEEE Trans Signal Process. 2010;58(6):3042–54.CrossRef Eldar YC, Kuppinger P, Bolcskei H. Block-sparse signals: uncertainty relations and efficient recovery. IEEE Trans Signal Process. 2010;58(6):3042–54.CrossRef
23.
go back to reference Zhou W, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process. 2004;13(4):600–12.CrossRef Zhou W, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process. 2004;13(4):600–12.CrossRef
24.
go back to reference Kwan RK, Evans AC, Pike GB. MRI simulation-based evaluation of image-processing and classification methods. IEEE Trans Med Imaging. 1999;18(11):1085–97.CrossRefPubMed Kwan RK, Evans AC, Pike GB. MRI simulation-based evaluation of image-processing and classification methods. IEEE Trans Med Imaging. 1999;18(11):1085–97.CrossRefPubMed
25.
go back to reference Collins DL, Zijdenbos AP, Kollokian V, Sled JG, Kabani NJ, Holmes CJ, Evans AC. Design and construction of a realistic digital brain phantom. IEEE Trans Med Imaging. 1998;17(3):463–8.CrossRefPubMed Collins DL, Zijdenbos AP, Kollokian V, Sled JG, Kabani NJ, Holmes CJ, Evans AC. Design and construction of a realistic digital brain phantom. IEEE Trans Med Imaging. 1998;17(3):463–8.CrossRefPubMed
Metadata
Title
Joint sparse reconstruction of multi-contrast MRI images with graph based redundant wavelet transform
Authors
Zongying Lai
Xinlin Zhang
Di Guo
Xiaofeng Du
Yonggui Yang
Gang Guo
Zhong Chen
Xiaobo Qu
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2018
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/s12880-018-0251-y

Other articles of this Issue 1/2018

BMC Medical Imaging 1/2018 Go to the issue