Skip to main content
Top
Published in: BMC Medical Imaging 1/2016

Open Access 01-12-2016 | TECHNICAL ADVANCE

Sparse reconstruction of compressive sensing MRI using cross-domain stochastically fully connected conditional random fields

Authors: Edward Li, Farzad Khalvati, Mohammad Javad Shafiee, Masoom A. Haider, Alexander Wong

Published in: BMC Medical Imaging | Issue 1/2016

Login to get access

Abstract

Background

Magnetic Resonance Imaging (MRI) is a crucial medical imaging technology for the screening and diagnosis of frequently occurring cancers. However, image quality may suffer from long acquisition times for MRIs due to patient motion, which also leads to patient discomfort. Reducing MRI acquisition times can reduce patient discomfort leading to reduced motion artifacts from the acquisition process. Compressive sensing strategies applied to MRI have been demonstrated to be effective in decreasing acquisition times significantly by sparsely sampling the k-space during the acquisition process. However, such a strategy requires advanced reconstruction algorithms to produce high quality and reliable images from compressive sensing MRI.

Methods

This paper proposes a new reconstruction approach based on cross-domain stochastically fully connected conditional random fields (CD-SFCRF) for compressive sensing MRI. The CD-SFCRF introduces constraints in both k-space and spatial domains within a stochastically fully connected graphical model to produce improved MRI reconstruction.

Results

Experimental results using T2-weighted (T2w) imaging and diffusion-weighted imaging (DWI) of the prostate show strong performance in preserving fine details and tissue structures in the reconstructed images when compared to other tested methods even at low sampling rates.

Conclusions

The ability to better utilize a limited amount of information to reconstruct T2w and DWI images in a short amount of time while preserving the important details in the images demonstrates the potential of the proposed CD-SFCRF framework as a viable reconstruction algorithm for compressive sensing MRI.
Literature
3.
go back to reference Wong A, Khalvati F, Haider MA. Dual-Stage Correlated Diffusion Imaging. In: IEEE International Symposium on Biomedical Imaging (ISBI). Brooklyn: 2015. p. 75–8. Wong A, Khalvati F, Haider MA. Dual-Stage Correlated Diffusion Imaging. In: IEEE International Symposium on Biomedical Imaging (ISBI). Brooklyn: 2015. p. 75–8.
4.
go back to reference Khalvati F, Wong A, Haider MA. Enhanced Dual-Stage Correlated Diffusion Imaging. In: International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Orlando: 2016. p. 5537–40. Khalvati F, Wong A, Haider MA. Enhanced Dual-Stage Correlated Diffusion Imaging. In: International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Orlando: 2016. p. 5537–40.
7.
go back to reference Candès EJ. Compressive sampling. Int Congr Math. 2006; 3:1433–52. Candès EJ. Compressive sampling. Int Congr Math. 2006; 3:1433–52.
8.
13.
go back to reference Qu X, Cao X, Guo D, Hu C, Chen Z. Compressed Sensing MRI with Combined Sparsifying transforms and Smooted L0 Norm Minimization. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Dallas: 2010. p. 626–9. Qu X, Cao X, Guo D, Hu C, Chen Z. Compressed Sensing MRI with Combined Sparsifying transforms and Smooted L0 Norm Minimization. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Dallas: 2010. p. 626–9.
15.
go back to reference Trzasko J, Manduca A. Highly undersampled magnetic resonance image reconstruction via homotopic-minimization. Med Imaging IEEE Trans. 2009; 28(1):106–21.CrossRef Trzasko J, Manduca A. Highly undersampled magnetic resonance image reconstruction via homotopic-minimization. Med Imaging IEEE Trans. 2009; 28(1):106–21.CrossRef
16.
go back to reference Chartrand R. Fast algorithms for nonconvex compressive sensing: Mri reconstruction from very few data. In: Biomedical Imaging: From Nano to Macro, 2009. ISBI’09. IEEE International Symposium On. Boston: IEEE: 2009. p. 262–5. Chartrand R. Fast algorithms for nonconvex compressive sensing: Mri reconstruction from very few data. In: Biomedical Imaging: From Nano to Macro, 2009. ISBI’09. IEEE International Symposium On. Boston: IEEE: 2009. p. 262–5.
17.
go back to reference Yin W, Osher S, Goldfarb D, Darbon J. Bregman iterative algorithms for ∖ell_1-minimization with applications to compressed sensing. SIAM J Imaging Sci. 2008; 1(1):143–68.CrossRef Yin W, Osher S, Goldfarb D, Darbon J. Bregman iterative algorithms for ∖ell_1-minimization with applications to compressed sensing. SIAM J Imaging Sci. 2008; 1(1):143–68.CrossRef
18.
go back to reference Figueiredo MA, Nowak RD, Wright SJ. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. Selected Topics Signal Process IEEE J. 2007; 1(4):586–97.CrossRef Figueiredo MA, Nowak RD, Wright SJ. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. Selected Topics Signal Process IEEE J. 2007; 1(4):586–97.CrossRef
19.
go back to reference Goldstein T, Osher S. The split bregman method for l1-regularized problems. SIAM J Imaging Sci. 2009; 2(2):323–43.CrossRef Goldstein T, Osher S. The split bregman method for l1-regularized problems. SIAM J Imaging Sci. 2009; 2(2):323–43.CrossRef
20.
go back to reference Wang Y, Yang J, Yin W, Zhang Y. A new alternating minimization algorithm for total variation image reconstruction. SIAM J Imaging Sci. 2008; 1(3):248–72.CrossRef Wang Y, Yang J, Yin W, Zhang Y. A new alternating minimization algorithm for total variation image reconstruction. SIAM J Imaging Sci. 2008; 1(3):248–72.CrossRef
21.
go back to reference Osher S, Burger M, Goldfarb D, Xu J, Yin W. An iterative regularization method for total variation-based image restoration. Multiscale Model Simul. 2005; 4(2):460–89.CrossRef Osher S, Burger M, Goldfarb D, Xu J, Yin W. An iterative regularization method for total variation-based image restoration. Multiscale Model Simul. 2005; 4(2):460–89.CrossRef
24.
go back to reference Aster R, Borchers B, Thurber C. Parameter estimation and inverse problems. Int Geophys. Series, 90: Elsevier; 2005. Aster R, Borchers B, Thurber C. Parameter estimation and inverse problems. Int Geophys. Series, 90: Elsevier; 2005.
25.
go back to reference Held K, Kops ER, Krause BJ, Wells III WM, Kikinis R, Muller-Gartner HW. Markov random field segmentation of brain mr images. Med Imaging, IEEE Trans. 1997; 16(6):878–6.CrossRef Held K, Kops ER, Krause BJ, Wells III WM, Kikinis R, Muller-Gartner HW. Markov random field segmentation of brain mr images. Med Imaging, IEEE Trans. 1997; 16(6):878–6.CrossRef
26.
go back to reference Blake A, Kohli P, Rother C. Markov Random Fields for Vision and Image Processing. Cambridge: MIT Press; 2011. Blake A, Kohli P, Rother C. Markov Random Fields for Vision and Image Processing. Cambridge: MIT Press; 2011.
27.
go back to reference Lafferty J, McCallum A, Pereira FCN. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: ICML (International Conference on Machine Learning): 2001. p. 282–9. Lafferty J, McCallum A, Pereira FCN. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: ICML (International Conference on Machine Learning): 2001. p. 282–9.
28.
go back to reference Nyquist H. Certain topics in telegraph transmission theory. Am Inst Electrical Eng Trans. 1928; 47(2):617–44.CrossRef Nyquist H. Certain topics in telegraph transmission theory. Am Inst Electrical Eng Trans. 1928; 47(2):617–44.CrossRef
29.
go back to reference Shafiee MJ, Wong A, Siva P, Fieguth P. IEEE International Conference on Image Processing (ICIP). Paris; 2014, pp. 4289–93. Shafiee MJ, Wong A, Siva P, Fieguth P. IEEE International Conference on Image Processing (ICIP). Paris; 2014, pp. 4289–93.
30.
go back to reference Ljunggren S. A simple graphical representation of fourier-based imaging methods. J Magn Reson (1969). 1983; 54(2):338–43.CrossRef Ljunggren S. A simple graphical representation of fourier-based imaging methods. J Magn Reson (1969). 1983; 54(2):338–43.CrossRef
31.
go back to reference Khalvati F, Wong A, Haider M. Automated Prostate Cancer Detection via Comprehensive Multi-Parametric Magnetic Resonance Imaging Texture Feature Models. Biomed Central Med Imaging. 2015:15–27. doi:10.1186/s12880-015-0069-9. Khalvati F, Wong A, Haider M. Automated Prostate Cancer Detection via Comprehensive Multi-Parametric Magnetic Resonance Imaging Texture Feature Models. Biomed Central Med Imaging. 2015:15–27. doi:10.1186/s12880-015-0069-9.
32.
go back to reference Khalvati F, Modhafar A, Cameron A, Wong A, Haider M. A multi-parametric diffusion magnetic resonance imaging texture feature model for prostate cancer analysis. In: MICCAI 2014 Workshop on Computational Diffusion MRI. Boston: 2014. p. 79–88. Khalvati F, Modhafar A, Cameron A, Wong A, Haider M. A multi-parametric diffusion magnetic resonance imaging texture feature model for prostate cancer analysis. In: MICCAI 2014 Workshop on Computational Diffusion MRI. Boston: 2014. p. 79–88.
33.
go back to reference Cameron A, Khalvati F, Haider M, Wong A. MAPS: A Quantitative Radiomics Approach for Prostate Cancer Detection. IEEE Trans Biomed Eng. 2016; 63(6):1145–56.CrossRefPubMed Cameron A, Khalvati F, Haider M, Wong A. MAPS: A Quantitative Radiomics Approach for Prostate Cancer Detection. IEEE Trans Biomed Eng. 2016; 63(6):1145–56.CrossRefPubMed
34.
go back to reference Cameron A, Modhafar A, Khalvati F, Lui D, Shafiee M, Wong A, Haider MA. Multiparametric MRI Prostate Cancer Analysis via a Hybrid Morphological-Textural Model. In: International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Chicago: 2014. p. 3357–60. Cameron A, Modhafar A, Khalvati F, Lui D, Shafiee M, Wong A, Haider MA. Multiparametric MRI Prostate Cancer Analysis via a Hybrid Morphological-Textural Model. In: International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Chicago: 2014. p. 3357–60.
35.
go back to reference Chung A, Scharfenberger C, Khalvati F, Wong A, Haider M. Textural Distinctiveness in Multi-Parametric Prostate MRI for Suspicious Region Detection. In: International Conference on Image Analysis and Recognition (ICIAR). Ontario: 2015. p. 368–76. Chung A, Scharfenberger C, Khalvati F, Wong A, Haider M. Textural Distinctiveness in Multi-Parametric Prostate MRI for Suspicious Region Detection. In: International Conference on Image Analysis and Recognition (ICIAR). Ontario: 2015. p. 368–76.
36.
go back to reference Zhang J, Khalvati F, Wong A, Haider M. Superpixel-based Prostate Cancer Detection from Diffusion Magnetic Resonance Imaging. Vision Lett. 2015; 1(1):107.CrossRef Zhang J, Khalvati F, Wong A, Haider M. Superpixel-based Prostate Cancer Detection from Diffusion Magnetic Resonance Imaging. Vision Lett. 2015; 1(1):107.CrossRef
Metadata
Title
Sparse reconstruction of compressive sensing MRI using cross-domain stochastically fully connected conditional random fields
Authors
Edward Li
Farzad Khalvati
Mohammad Javad Shafiee
Masoom A. Haider
Alexander Wong
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2016
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/s12880-016-0156-6

Other articles of this Issue 1/2016

BMC Medical Imaging 1/2016 Go to the issue