Skip to main content
Top
Published in: BMC Medical Imaging 1/2018

Open Access 01-12-2018 | Research article

In silico simulation of liver crack detection using ultrasonic shear wave imaging

Authors: Erwei Nie, Jiao Yu, Debaditya Dutta, Yanying Zhu

Published in: BMC Medical Imaging | Issue 1/2018

Login to get access

Abstract

Background

Liver trauma is an important source of morbidity and mortality worldwide. A timely detection and precise evaluation of traumatic liver injury and the bleeding site is necessary. There is a need to develop better imaging modalities of hepatic injuries to increase the sensitivity of ultrasonic imaging techniques for sites of hemorrhage caused by cracks. In this study, we conduct an in silico simulation of liver crack detection and delineation using an ultrasonic shear wave imaging (USWI) based method.

Methods

We simulate the generation and propagation of the shear wave in a liver tissue medium having a crack using COMSOL. Ultrasound radio frequency (RF) signal synthesis and the two-dimensional speckle tracking algorithm are applied to simulate USWI in a medium with randomly distributed scatterers. Crack detection is performed using the directional filter and the edge detection algorithm rather than the conventional inversion algorithm. Cracks with varied sizes and locations are studied with our method and the crack localization results are compared with the given crack.

Results

Our pilot simulation study shows that, by using USWI combined with a directional filter cum edge detection technique, the near-end edge of the crack can be detected in all the three cracks that we studied. The detection errors are within 5%. For a crack of 1.6 mm thickness, little shear wave can pass through it and the far-end edge of the crack cannot be detected. The detected crack lengths using USWI are all slightly shorter than the actual crack length. The robustness of our method in detecting a straight crack, a curved crack and a subtle crack of 0.5 mm thickness is demonstrated.

Conclusions

In this paper, we simulate the use of a USWI based method for the detection and delineation of the crack in liver. The in silico simulation helps to improve understanding and interpretation of USWI measurements in a physical scattered liver medium with a crack. This pilot study provides a basis for improved insights in future crack detection studies in a tissue phantom or liver.
Literature
1.
2.
go back to reference Chien LC, Lo SS, Yeh SY. Incidence of liver trauma and relative risk factors for mortality: a population-based study. J Chin Med Assoc. 2013;76:576–82.CrossRefPubMed Chien LC, Lo SS, Yeh SY. Incidence of liver trauma and relative risk factors for mortality: a population-based study. J Chin Med Assoc. 2013;76:576–82.CrossRefPubMed
6.
go back to reference Ophir J, Céspedes I, Ponnekanti H, Yazdi Y, Elastography LX. A quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging. 1991;13:111–34.CrossRefPubMed Ophir J, Céspedes I, Ponnekanti H, Yazdi Y, Elastography LX. A quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging. 1991;13:111–34.CrossRefPubMed
7.
go back to reference Sarvazyan AP, Skovoroda AR. The new approaches in ultrasonic visualization of cancers and their qualitative mechanical characterization for the differential diagnostics. In: Abstract of the all-union conference “the actual problems of the cancer ultrasonic diagnostics,” Moscow; 1990. Sarvazyan AP, Skovoroda AR. The new approaches in ultrasonic visualization of cancers and their qualitative mechanical characterization for the differential diagnostics. In: Abstract of the all-union conference “the actual problems of the cancer ultrasonic diagnostics,” Moscow; 1990.
8.
go back to reference Natarajan B, Gupta PK, Cemaj S, Sorensen M, Hatzoudis GI, Forse RAFAST. Scan: is it worth doing in hemodynamically stable blunt trauma patients? Surgery. 2010;148:695–701.CrossRefPubMed Natarajan B, Gupta PK, Cemaj S, Sorensen M, Hatzoudis GI, Forse RAFAST. Scan: is it worth doing in hemodynamically stable blunt trauma patients? Surgery. 2010;148:695–701.CrossRefPubMed
9.
go back to reference He L, Guo Y, Lee WN. Systematic performance evaluation of a cross-correlation-based ultrasound strain imaging method. Ultrasound Med Biol. 2016;42:2436–56.CrossRef He L, Guo Y, Lee WN. Systematic performance evaluation of a cross-correlation-based ultrasound strain imaging method. Ultrasound Med Biol. 2016;42:2436–56.CrossRef
10.
go back to reference Chen S, Urban MW, Greenleaf JF, Zheng Y, Yao A. Quantification of liver stiffness and viscosity with SDUV: in vivo animal study. In: 2008 IEEE Ultrasonics symposium (IUS); 2008. p. 654–7.CrossRef Chen S, Urban MW, Greenleaf JF, Zheng Y, Yao A. Quantification of liver stiffness and viscosity with SDUV: in vivo animal study. In: 2008 IEEE Ultrasonics symposium (IUS); 2008. p. 654–7.CrossRef
11.
go back to reference Wang MH, Palmeri ML, Rotemberg VM, Rouze NC, Nightingale KR. Improving the robustness of time-of-flight based shear wave speed reconstruction methods using RANSAC in human liver in vivo. Ultrasound Med Biol. 2010;36:802–13.CrossRefPubMedPubMedCentral Wang MH, Palmeri ML, Rotemberg VM, Rouze NC, Nightingale KR. Improving the robustness of time-of-flight based shear wave speed reconstruction methods using RANSAC in human liver in vivo. Ultrasound Med Biol. 2010;36:802–13.CrossRefPubMedPubMedCentral
12.
go back to reference Palmeri ML, Wang MH, Dahl JJ, Frinkley KD, Nightingale KR. Quantifying hepatic shear modulus in vivo using acoustic radiation force. Ultrasound Med Biol. 2008;34:546–58.CrossRefPubMedPubMedCentral Palmeri ML, Wang MH, Dahl JJ, Frinkley KD, Nightingale KR. Quantifying hepatic shear modulus in vivo using acoustic radiation force. Ultrasound Med Biol. 2008;34:546–58.CrossRefPubMedPubMedCentral
13.
14.
go back to reference Xu J, Tripathy S, Rubin JM, Stidham RW, Johnson LA, Higgins PDR, Kim K. A new nonlinear parameter in the developed strain-to-applied strain of the soft tissues and its application in ultrasound elasticity imaging. Ultrasound Med Biol. 2012;38:511–23.CrossRefPubMedPubMedCentral Xu J, Tripathy S, Rubin JM, Stidham RW, Johnson LA, Higgins PDR, Kim K. A new nonlinear parameter in the developed strain-to-applied strain of the soft tissues and its application in ultrasound elasticity imaging. Ultrasound Med Biol. 2012;38:511–23.CrossRefPubMedPubMedCentral
15.
go back to reference Maurice RL, Bertrand M. Speckle-motion artifact under tissue shearing. IEEE Trans Ultrason Ferroelectr Freq Control. 1999;46:584–94.CrossRefPubMed Maurice RL, Bertrand M. Speckle-motion artifact under tissue shearing. IEEE Trans Ultrason Ferroelectr Freq Control. 1999;46:584–94.CrossRefPubMed
16.
go back to reference Shao J, Wang J, Zhang Y, Cui L, Liu K, Bai J. Subtraction elastography for the evaluation of ablation-induced lesions: a feasibility study. IEEE Trans Ultrason Ferroelectr Freq Control. 2009;56:44–54.CrossRefPubMed Shao J, Wang J, Zhang Y, Cui L, Liu K, Bai J. Subtraction elastography for the evaluation of ablation-induced lesions: a feasibility study. IEEE Trans Ultrason Ferroelectr Freq Control. 2009;56:44–54.CrossRefPubMed
17.
go back to reference Wagner RF, Smith SW, Sandrik JM, Lopez H. Statistics of speckle in ultrasound B-scans. IEEE Trans Sonics Ultrason. 1983;30:156–63.CrossRef Wagner RF, Smith SW, Sandrik JM, Lopez H. Statistics of speckle in ultrasound B-scans. IEEE Trans Sonics Ultrason. 1983;30:156–63.CrossRef
18.
go back to reference Mcaleavey SA, Osapoetra LO, Langdon J. Shear wave arrival time estimates correlate with local speckle pattern. IEEE Trans Ultrason Ferroelectr Freq Control. 2015;62:2054–67.CrossRefPubMedPubMedCentral Mcaleavey SA, Osapoetra LO, Langdon J. Shear wave arrival time estimates correlate with local speckle pattern. IEEE Trans Ultrason Ferroelectr Freq Control. 2015;62:2054–67.CrossRefPubMedPubMedCentral
19.
20.
go back to reference Lubinski MA, Emelianov SY, O'Donnell M. Speckle tracking methods for ultrasonic elasticity imaging using short-time correlation. IEEE Trans Ultrason Ferroelectr Freq Control. 1999;46:82–96.CrossRefPubMed Lubinski MA, Emelianov SY, O'Donnell M. Speckle tracking methods for ultrasonic elasticity imaging using short-time correlation. IEEE Trans Ultrason Ferroelectr Freq Control. 1999;46:82–96.CrossRefPubMed
21.
go back to reference Kim K, Johnson LA, Jia C, Joyce JC, Rangwalla S, Higgins PDR, Rubin JM. Noninvasive ultrasound elasticity imaging (UEI) of Crohn's disease: animal model. Ultrasound Med Biol. 2008;34:902–12.CrossRefPubMedPubMedCentral Kim K, Johnson LA, Jia C, Joyce JC, Rangwalla S, Higgins PDR, Rubin JM. Noninvasive ultrasound elasticity imaging (UEI) of Crohn's disease: animal model. Ultrasound Med Biol. 2008;34:902–12.CrossRefPubMedPubMedCentral
22.
go back to reference Manduca A, Lake DS, Kruse SA, Ehman RL. Spatio-temporal directional filtering for improved inversion of MR elastography images. Med Image Anal. 2002;7:465–73.CrossRef Manduca A, Lake DS, Kruse SA, Ehman RL. Spatio-temporal directional filtering for improved inversion of MR elastography images. Med Image Anal. 2002;7:465–73.CrossRef
23.
go back to reference Deffieux T, Gennisson JL, Bercoff J, Tanter M. On the effects of reflected waves in transient shear wave elastography. IEEE Trans Ultrason Ferroelectr Freq Control. 2011;58:2032–5.CrossRefPubMed Deffieux T, Gennisson JL, Bercoff J, Tanter M. On the effects of reflected waves in transient shear wave elastography. IEEE Trans Ultrason Ferroelectr Freq Control. 2011;58:2032–5.CrossRefPubMed
24.
go back to reference Deffieux T, Gennisson JL, Larrat B, Fink M, Tanter M. The variance of quantitative estimates in shear wave imaging: theory and experiments. IEEE Trans Ultrason Ferroelectr Freq Control. 2012;59:2390–410.CrossRefPubMed Deffieux T, Gennisson JL, Larrat B, Fink M, Tanter M. The variance of quantitative estimates in shear wave imaging: theory and experiments. IEEE Trans Ultrason Ferroelectr Freq Control. 2012;59:2390–410.CrossRefPubMed
25.
go back to reference Mercado KP, Langdon J, Helguera M, McAleavey SA, Hocking DC, Dalecki D. Scholte wave generation during single tracking location shear wave elasticity imaging of engineered tissues. J Acoust Soc Am. 2015;138:138–44.CrossRef Mercado KP, Langdon J, Helguera M, McAleavey SA, Hocking DC, Dalecki D. Scholte wave generation during single tracking location shear wave elasticity imaging of engineered tissues. J Acoust Soc Am. 2015;138:138–44.CrossRef
26.
go back to reference Coccolini F, Montori G, Catena F, Di Saverio S, Biffl W, Moore EE, Peitzman AB, Rizoli S, Tugnoli G, Sartelli M, Manfredi R, Ansaloni L. Liver trauma: WSES position paper. World J Emerg Surg. 2015;10:39.CrossRefPubMedPubMedCentral Coccolini F, Montori G, Catena F, Di Saverio S, Biffl W, Moore EE, Peitzman AB, Rizoli S, Tugnoli G, Sartelli M, Manfredi R, Ansaloni L. Liver trauma: WSES position paper. World J Emerg Surg. 2015;10:39.CrossRefPubMedPubMedCentral
27.
go back to reference Savatmongkorngul S, Wongwaisayawan S, Kaewlai R. Focused assessment with sonography for trauma: current perspectives. Open Access Emerg Med. 2017;9:57–62.CrossRefPubMedPubMedCentral Savatmongkorngul S, Wongwaisayawan S, Kaewlai R. Focused assessment with sonography for trauma: current perspectives. Open Access Emerg Med. 2017;9:57–62.CrossRefPubMedPubMedCentral
28.
go back to reference McGahan JP, Wang L, Richards JR. From the RSNA refresher courses: focused abdominal US for trauma. Radiographics. 2001;21(Spec Issue):S191–9.CrossRefPubMed McGahan JP, Wang L, Richards JR. From the RSNA refresher courses: focused abdominal US for trauma. Radiographics. 2001;21(Spec Issue):S191–9.CrossRefPubMed
30.
go back to reference Rudenko OV, Sarvazyan AP, Emelianov SY. Acoustic radiation force and streaming induced by focused nonlinear ultrasound in a dissipative medium. J Acoust Soc Am. 1996;99:2791–8.CrossRef Rudenko OV, Sarvazyan AP, Emelianov SY. Acoustic radiation force and streaming induced by focused nonlinear ultrasound in a dissipative medium. J Acoust Soc Am. 1996;99:2791–8.CrossRef
31.
go back to reference Sarvazyan AP, Rudenko OV, Swanson SD, Fowlkes JB, Emelianov SY. Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics. Ultrasound Med Biol. 1998;24:1419–35.CrossRefPubMed Sarvazyan AP, Rudenko OV, Swanson SD, Fowlkes JB, Emelianov SY. Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics. Ultrasound Med Biol. 1998;24:1419–35.CrossRefPubMed
32.
go back to reference Athanasiou A, Tardivon A, Tanter M, Sigal-Zafrani B, Bercoff J, Deffieux T, Gennisson JL, Fink M, Neuenschwander S. Breast lesions: quantitative elastography with supersonic shear imaging—preliminary results. Radiology. 2010;256:297–303.CrossRefPubMed Athanasiou A, Tardivon A, Tanter M, Sigal-Zafrani B, Bercoff J, Deffieux T, Gennisson JL, Fink M, Neuenschwander S. Breast lesions: quantitative elastography with supersonic shear imaging—preliminary results. Radiology. 2010;256:297–303.CrossRefPubMed
33.
go back to reference Bavu E, Gennisson JL, Mallet V. Supersonic shear imaging is a new potent morphological non-invasive technique to assess liver fibrosis. Part 1: technical feasibility. Hepatology. 2010;52(Suppl):S166. Bavu E, Gennisson JL, Mallet V. Supersonic shear imaging is a new potent morphological non-invasive technique to assess liver fibrosis. Part 1: technical feasibility. Hepatology. 2010;52(Suppl):S166.
34.
go back to reference Wu R, Luo Y, Lv F, Tang J, Liu Q, Jiao Z. Evaluation of liver trauma after haemostatic injection by shear wave elastography: an experimental study. Chin J Med Ultrasound. 2011;8:1914–21. Wu R, Luo Y, Lv F, Tang J, Liu Q, Jiao Z. Evaluation of liver trauma after haemostatic injection by shear wave elastography: an experimental study. Chin J Med Ultrasound. 2011;8:1914–21.
35.
go back to reference Wu R, Luo Y, Lv F, Tang J, Liu Q, Jiao Z. An animal experiment of real-time shear wave elastography in diagnosing acute liver trauma. Chin J Med Ultrasound. 2012;20:294–7. Wu R, Luo Y, Lv F, Tang J, Liu Q, Jiao Z. An animal experiment of real-time shear wave elastography in diagnosing acute liver trauma. Chin J Med Ultrasound. 2012;20:294–7.
36.
go back to reference Baghani A, Salcudean S, Rohling R. Theoretical limitations of the elastic wave equation inversion for tissue elastography. J Acoust Soc Am. 2009;126:1541–51.CrossRefPubMed Baghani A, Salcudean S, Rohling R. Theoretical limitations of the elastic wave equation inversion for tissue elastography. J Acoust Soc Am. 2009;126:1541–51.CrossRefPubMed
37.
go back to reference Deffieux T, Montaldo G, Tanter M, Fink M. Shear wave spectroscopy for in vivo quantification of human soft tissues visco-elasticity. IEEE Trans Med Imaging. 2009;28:313–22.CrossRefPubMed Deffieux T, Montaldo G, Tanter M, Fink M. Shear wave spectroscopy for in vivo quantification of human soft tissues visco-elasticity. IEEE Trans Med Imaging. 2009;28:313–22.CrossRefPubMed
38.
go back to reference Sigrist RMS, Liau J, Kaffas AE, Chammas MC, Willmann JK. Ultrasound elastography: review of techniques and clinical applications. Theranostics. 2017;7:1303–29.CrossRefPubMedPubMedCentral Sigrist RMS, Liau J, Kaffas AE, Chammas MC, Willmann JK. Ultrasound elastography: review of techniques and clinical applications. Theranostics. 2017;7:1303–29.CrossRefPubMedPubMedCentral
39.
go back to reference Shiina T, Nightingale KR, Palmeri ML, Hall TJ, Bamber JC, Barr RG, et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: part 1: basic principles and terminology. Ultrasound Med Biol. 2015;41:1126–47.CrossRefPubMed Shiina T, Nightingale KR, Palmeri ML, Hall TJ, Bamber JC, Barr RG, et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: part 1: basic principles and terminology. Ultrasound Med Biol. 2015;41:1126–47.CrossRefPubMed
40.
go back to reference Park E. Finite element formulation for shear modulus reconstruction in transient elastography. Inverse Probl Sci En. 2009;17:605–26.CrossRef Park E. Finite element formulation for shear modulus reconstruction in transient elastography. Inverse Probl Sci En. 2009;17:605–26.CrossRef
41.
go back to reference Lubinski MA, Emelianov SY, Raghavan KR, Yagle AE, Skovoroda AR, O’Donnell M. Lateral displacement estimation using tissue incompressibility. IEEE Trans Ultrason Ferroelectr Freq Control. 1996;43:247–56.CrossRef Lubinski MA, Emelianov SY, Raghavan KR, Yagle AE, Skovoroda AR, O’Donnell M. Lateral displacement estimation using tissue incompressibility. IEEE Trans Ultrason Ferroelectr Freq Control. 1996;43:247–56.CrossRef
42.
go back to reference Konofagou E, Ophir JA. New elastographic method for estimation and imaging of lateral displacements, lateral strains, corrected axial strains and Poisson's ratios in tissues. Ultrasound Med Biol. 1998;24:1183–99.CrossRefPubMed Konofagou E, Ophir JA. New elastographic method for estimation and imaging of lateral displacements, lateral strains, corrected axial strains and Poisson's ratios in tissues. Ultrasound Med Biol. 1998;24:1183–99.CrossRefPubMed
43.
go back to reference Chaturvedi P, Insana MF, Hall TJ. 2-D companding for noise reduction in strain imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 1998;45:179–91.CrossRefPubMed Chaturvedi P, Insana MF, Hall TJ. 2-D companding for noise reduction in strain imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 1998;45:179–91.CrossRefPubMed
44.
go back to reference Nishi T, Funabashi N, Ozawa K, Takahara M, Fujimoto Y, Kamata T, Kobayashi Y. Resting multilayer 2D speckle-tracking transthoracic echocardiography for the detection of clinically stable myocardial ischemic segments confirmed by invasive fractional flow reserve. Part 1: vessel-by-vessel analysis. Int J Cardiol. 2016;218:324–32.CrossRefPubMed Nishi T, Funabashi N, Ozawa K, Takahara M, Fujimoto Y, Kamata T, Kobayashi Y. Resting multilayer 2D speckle-tracking transthoracic echocardiography for the detection of clinically stable myocardial ischemic segments confirmed by invasive fractional flow reserve. Part 1: vessel-by-vessel analysis. Int J Cardiol. 2016;218:324–32.CrossRefPubMed
45.
go back to reference Palmeri ML, Sharma AC, Bouchard RR, Nightingale RW, Nightingale KRA. Finite-element method model of soft tissue response to impulsive acoustic radiation force. IEEE Trans Ultrason Ferroelectr Freq Control. 2005;52:1699–712.CrossRefPubMedPubMedCentral Palmeri ML, Sharma AC, Bouchard RR, Nightingale RW, Nightingale KRA. Finite-element method model of soft tissue response to impulsive acoustic radiation force. IEEE Trans Ultrason Ferroelectr Freq Control. 2005;52:1699–712.CrossRefPubMedPubMedCentral
46.
go back to reference Mcaleavey SA, Nightingale KR, Trahey GE. Estimates of echo correlation and measurement bias in acoustic radiation force impulse imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 2003;50:631–41.CrossRefPubMed Mcaleavey SA, Nightingale KR, Trahey GE. Estimates of echo correlation and measurement bias in acoustic radiation force impulse imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 2003;50:631–41.CrossRefPubMed
47.
go back to reference Wang Y, Zhang Q, Luo S. Image tracking method based on fractal-geometry edge extraction. J Appl Optics. 2005;34:S258. Wang Y, Zhang Q, Luo S. Image tracking method based on fractal-geometry edge extraction. J Appl Optics. 2005;34:S258.
49.
go back to reference Adedipe AA, Backlund BH, Basler E, Shah S. Accuracy of the fast exam: a retrospective analysis of blunt abdominal trauma patients. Open Access Emerg Med. 2016;06:1000308.CrossRef Adedipe AA, Backlund BH, Basler E, Shah S. Accuracy of the fast exam: a retrospective analysis of blunt abdominal trauma patients. Open Access Emerg Med. 2016;06:1000308.CrossRef
50.
go back to reference Bruce M, Kolokythas O, Ferraioli G, Filice C, Limitations O’DM. Artifacts in shear-wave elastography of the liver. Biomed Eng Lett. 2017;7:1–9.CrossRef Bruce M, Kolokythas O, Ferraioli G, Filice C, Limitations O’DM. Artifacts in shear-wave elastography of the liver. Biomed Eng Lett. 2017;7:1–9.CrossRef
51.
go back to reference Wang C, Zheng J, Huang Z, Xiao Y, Song D, Zeng J, Zheng H, Zheng R. Influence of measurement depth on the stiffness assessment of healthy liver with real-time shear wave elastography. Ultrasound Med Biol. 2014;40:461–9.CrossRefPubMed Wang C, Zheng J, Huang Z, Xiao Y, Song D, Zeng J, Zheng H, Zheng R. Influence of measurement depth on the stiffness assessment of healthy liver with real-time shear wave elastography. Ultrasound Med Biol. 2014;40:461–9.CrossRefPubMed
52.
go back to reference Ferraioli G, Tinelli C, Zicchetti M, Above E, Poma G, Gregorio MD, Filice C. Reproducibility of real-time shear wave elastography in the evaluation of liver elasticity. Eur J Radiol. 2012;81:3102–6.CrossRefPubMed Ferraioli G, Tinelli C, Zicchetti M, Above E, Poma G, Gregorio MD, Filice C. Reproducibility of real-time shear wave elastography in the evaluation of liver elasticity. Eur J Radiol. 2012;81:3102–6.CrossRefPubMed
53.
go back to reference He XN, Diao XF, Lin HM, Zhang XY, Shen YY, Chen SP, Qin ZD, Chen X. Improved shear wave motion detection using coded excitation for transient elastography. Sci Rep. 2017;7:44483.CrossRefPubMedPubMedCentral He XN, Diao XF, Lin HM, Zhang XY, Shen YY, Chen SP, Qin ZD, Chen X. Improved shear wave motion detection using coded excitation for transient elastography. Sci Rep. 2017;7:44483.CrossRefPubMedPubMedCentral
54.
go back to reference Giachetti A, Zanetti G. Vascular modeling from volumetric diagnostic data: a review. Curr Med Imaging Rev. 2006;2:415–23.CrossRef Giachetti A, Zanetti G. Vascular modeling from volumetric diagnostic data: a review. Curr Med Imaging Rev. 2006;2:415–23.CrossRef
55.
go back to reference Ros SJ, Andarawis-Puri N, Flatow EL. Tendon extracellular matrix damage detection and quantification using automated edge detection analysis. J Biomech. 2013;46:2844–7.CrossRefPubMed Ros SJ, Andarawis-Puri N, Flatow EL. Tendon extracellular matrix damage detection and quantification using automated edge detection analysis. J Biomech. 2013;46:2844–7.CrossRefPubMed
Metadata
Title
In silico simulation of liver crack detection using ultrasonic shear wave imaging
Authors
Erwei Nie
Jiao Yu
Debaditya Dutta
Yanying Zhu
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2018
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/s12880-018-0249-5

Other articles of this Issue 1/2018

BMC Medical Imaging 1/2018 Go to the issue