Skip to main content
Top
Published in: BMC Medical Imaging 1/2017

Open Access 01-12-2017 | Research Article

Semi-automated brain tumor segmentation on multi-parametric MRI using regularized non-negative matrix factorization

Authors: Nicolas Sauwen, Marjan Acou, Diana M. Sima, Jelle Veraart, Frederik Maes, Uwe Himmelreich, Eric Achten, Sabine Van Huffel

Published in: BMC Medical Imaging | Issue 1/2017

Login to get access

Abstract

Background

Segmentation of gliomas in multi-parametric (MP-)MR images is challenging due to their heterogeneous nature in terms of size, appearance and location. Manual tumor segmentation is a time-consuming task and clinical practice would benefit from (semi-) automated segmentation of the different tumor compartments.

Methods

We present a semi-automated framework for brain tumor segmentation based on non-negative matrix factorization (NMF) that does not require prior training of the method. L1-regularization is incorporated into the NMF objective function to promote spatial consistency and sparseness of the tissue abundance maps. The pathological sources are initialized through user-defined voxel selection. Knowledge about the spatial location of the selected voxels is combined with tissue adjacency constraints in a post-processing step to enhance segmentation quality. The method is applied to an MP-MRI dataset of 21 high-grade glioma patients, including conventional, perfusion-weighted and diffusion-weighted MRI. To assess the effect of using MP-MRI data and the L1-regularization term, analyses are also run using only conventional MRI and without L1-regularization. Robustness against user input variability is verified by considering the statistical distribution of the segmentation results when repeatedly analyzing each patient’s dataset with a different set of random seeding points.

Results

Using L1-regularized semi-automated NMF segmentation, mean Dice-scores of 65%, 74 and 80% are found for active tumor, the tumor core and the whole tumor region. Mean Hausdorff distances of 6.1 mm, 7.4 mm and 8.2 mm are found for active tumor, the tumor core and the whole tumor region. Lower Dice-scores and higher Hausdorff distances are found without L1-regularization and when only considering conventional MRI data.

Conclusions

Based on the mean Dice-scores and Hausdorff distances, segmentation results are competitive with state-of-the-art in literature. Robust results were found for most patients, although careful voxel selection is mandatory to avoid sub-optimal segmentation.
Literature
1.
go back to reference Ostrom QT, Gittleman H, Liao P, Rouse C, Chen Y, Dowling J, Wolinsky Y, Kruchko C, Barnholtz-Sloan J. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro-oncology. 2014; 16(suppl 4):1–63.CrossRef Ostrom QT, Gittleman H, Liao P, Rouse C, Chen Y, Dowling J, Wolinsky Y, Kruchko C, Barnholtz-Sloan J. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro-oncology. 2014; 16(suppl 4):1–63.CrossRef
2.
go back to reference Cha S. Update on brain tumor imaging: from anatomy to physiology. Am J Neuroradiol. 2006; 27(3):475–87.PubMed Cha S. Update on brain tumor imaging: from anatomy to physiology. Am J Neuroradiol. 2006; 27(3):475–87.PubMed
4.
go back to reference Van Cauter S, De Keyzer F, Sima DM, Sava AC, D’Arco F, Veraart J, Peeters RR, Leemans A, Van Gool S, Wilms G, et al. Integrating diffusion kurtosis imaging, dynamic susceptibility-weighted contrast-enhanced MRI, and short echo time chemical shift imaging for grading gliomas. Neuro-oncology. 2014; 16(7):1010–21.CrossRefPubMedPubMedCentral Van Cauter S, De Keyzer F, Sima DM, Sava AC, D’Arco F, Veraart J, Peeters RR, Leemans A, Van Gool S, Wilms G, et al. Integrating diffusion kurtosis imaging, dynamic susceptibility-weighted contrast-enhanced MRI, and short echo time chemical shift imaging for grading gliomas. Neuro-oncology. 2014; 16(7):1010–21.CrossRefPubMedPubMedCentral
5.
go back to reference Cha S, Knopp EA, Johnson G, Wetzel SG, Litt AW, Zagzag D. Intracranial mass lesions: Dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging 1. Radiology. 2002; 223(1):11–29.CrossRefPubMed Cha S, Knopp EA, Johnson G, Wetzel SG, Litt AW, Zagzag D. Intracranial mass lesions: Dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging 1. Radiology. 2002; 223(1):11–29.CrossRefPubMed
6.
go back to reference Bulakbasi N, Kocaoglu M, Farzaliyev A, Tayfun C, Ucoz T, Somuncu I. Assessment of diagnostic accuracy of perfusion MR imaging in primary and metastatic solitary malignant brain tumors. Am J Neuroradiol. 2005; 26(9):2187–199.PubMed Bulakbasi N, Kocaoglu M, Farzaliyev A, Tayfun C, Ucoz T, Somuncu I. Assessment of diagnostic accuracy of perfusion MR imaging in primary and metastatic solitary malignant brain tumors. Am J Neuroradiol. 2005; 26(9):2187–199.PubMed
7.
go back to reference Hu LS, Eschbacher JM, Heiserman JE, Dueck AC, Shapiro WR, Liu S, Karis JP, Smith KA, Coons SW, Nakaji P, et al. Reevaluating the imaging definition of tumor progression: perfusion MRI quantifies recurrent glioblastoma tumor fraction, pseudoprogression, and radiation necrosis to predict survival. Neuro-Oncology. 2012; 14(7):919–30.CrossRefPubMedPubMedCentral Hu LS, Eschbacher JM, Heiserman JE, Dueck AC, Shapiro WR, Liu S, Karis JP, Smith KA, Coons SW, Nakaji P, et al. Reevaluating the imaging definition of tumor progression: perfusion MRI quantifies recurrent glioblastoma tumor fraction, pseudoprogression, and radiation necrosis to predict survival. Neuro-Oncology. 2012; 14(7):919–30.CrossRefPubMedPubMedCentral
8.
go back to reference Price S, Jena R, Burnet N, Hutchinson P, Dean A, Pena A, Pickard J, Carpenter T, Gillard J. Improved delineation of glioma margins and regions of infiltration with the use of diffusion tensor imaging: an image-guided biopsy study. Am J Neuroradiol. 2006; 27(9):1969–74.PubMed Price S, Jena R, Burnet N, Hutchinson P, Dean A, Pena A, Pickard J, Carpenter T, Gillard J. Improved delineation of glioma margins and regions of infiltration with the use of diffusion tensor imaging: an image-guided biopsy study. Am J Neuroradiol. 2006; 27(9):1969–74.PubMed
9.
go back to reference Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, DeGroot J, Wick W, Gilbert MR, Lassman AB, et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol. 2010; 28(11):1963–72.CrossRefPubMed Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, DeGroot J, Wick W, Gilbert MR, Lassman AB, et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol. 2010; 28(11):1963–72.CrossRefPubMed
10.
go back to reference Dhermain F. Radiotherapy of high-grade gliomas: current standards and new concepts, innovations in imaging and radiotherapy, and new therapeutic approaches. Chin J Cancer. 2014; 33(1):16–24.CrossRefPubMedPubMedCentral Dhermain F. Radiotherapy of high-grade gliomas: current standards and new concepts, innovations in imaging and radiotherapy, and new therapeutic approaches. Chin J Cancer. 2014; 33(1):16–24.CrossRefPubMedPubMedCentral
11.
go back to reference Lacroix M, Abi-Said D, Fourney DR, Gokaslan ZL, Shi W, DeMonte F, Lang FF, McCutcheon IE, Hassenbusch SJ, Holland E, Hess K, Michael C, Miller D, Sawaya R. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg. 2001; 95(2):190–8.CrossRefPubMed Lacroix M, Abi-Said D, Fourney DR, Gokaslan ZL, Shi W, DeMonte F, Lang FF, McCutcheon IE, Hassenbusch SJ, Holland E, Hess K, Michael C, Miller D, Sawaya R. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg. 2001; 95(2):190–8.CrossRefPubMed
12.
go back to reference Ellingson BM, Cloughesy TF, Lai A, Nghiemphu PL, Mischel PS, Pope WB. Quantitative volumetric analysis of conventional MRI response in recurrent glioblastoma treated with bevacizumab. Neuro-oncol. 2011; 13(4):206.CrossRef Ellingson BM, Cloughesy TF, Lai A, Nghiemphu PL, Mischel PS, Pope WB. Quantitative volumetric analysis of conventional MRI response in recurrent glioblastoma treated with bevacizumab. Neuro-oncol. 2011; 13(4):206.CrossRef
13.
go back to reference Gordillo N, Montseny E, Sobrevilla P. State of the art survey on MRI brain tumor segmentation. Magn Reson Imaging. 2013; 31(8):1426–38.CrossRefPubMed Gordillo N, Montseny E, Sobrevilla P. State of the art survey on MRI brain tumor segmentation. Magn Reson Imaging. 2013; 31(8):1426–38.CrossRefPubMed
14.
go back to reference Menze B, Reyes M, Van Leemput K, et al. The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging. 2015; 34(10):1993–2024.CrossRefPubMed Menze B, Reyes M, Van Leemput K, et al. The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging. 2015; 34(10):1993–2024.CrossRefPubMed
15.
go back to reference Bauer S, Fejes T, Slotboom J, Wiest R, Nolte LP, Reyes M. Segmentation of brain tumor images based on integrated hierarchical classification and regularization. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin: Springer: 2012. p. 10–13. Bauer S, Fejes T, Slotboom J, Wiest R, Nolte LP, Reyes M. Segmentation of brain tumor images based on integrated hierarchical classification and regularization. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin: Springer: 2012. p. 10–13.
16.
go back to reference Zikic D, Glocker B, Konukoglu E, Criminisi A, Demiralp C, Shotton J, Thomas O, Das T, Jena R, Price S. Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel MR. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, vol. LCNS 7512. Berlin: Springer: 2012. p. 369–76. Zikic D, Glocker B, Konukoglu E, Criminisi A, Demiralp C, Shotton J, Thomas O, Das T, Jena R, Price S. Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel MR. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, vol. LCNS 7512. Berlin: Springer: 2012. p. 369–76.
17.
go back to reference Lee CH, Wang S, Murtha A, Brown MR, Greiner R. Segmenting brain tumors using pseudo–conditional random fields. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin: Springer: 2008. p. 359–66. Lee CH, Wang S, Murtha A, Brown MR, Greiner R. Segmenting brain tumors using pseudo–conditional random fields. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin: Springer: 2008. p. 359–66.
18.
go back to reference Verma R, Zacharaki EI, Ou Y, Cai H, Chawla S, Lee SK, Melhem ER, Wolf R, Davatzikos C. Multiparametric tissue characterization of brain neoplasms and their recurrence using pattern classification of MR images. Acad Radiol. 2008; 15(8):966–77.CrossRefPubMedPubMedCentral Verma R, Zacharaki EI, Ou Y, Cai H, Chawla S, Lee SK, Melhem ER, Wolf R, Davatzikos C. Multiparametric tissue characterization of brain neoplasms and their recurrence using pattern classification of MR images. Acad Radiol. 2008; 15(8):966–77.CrossRefPubMedPubMedCentral
19.
20.
go back to reference Li SZ. Markov random field modeling in image analysis: Springer; 2009. ISBN: 1848002793. Li SZ. Markov random field modeling in image analysis: Springer; 2009. ISBN: 1848002793.
21.
go back to reference Lafferty J, McCallum A, Pereira F. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: Proceedings of the Eighteenth International Conference on Machine Learning, ICML, vol. 1. Williamstown: 2001. p. 282–9. Lafferty J, McCallum A, Pereira F. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: Proceedings of the Eighteenth International Conference on Machine Learning, ICML, vol. 1. Williamstown: 2001. p. 282–9.
22.
go back to reference Fletcher-Heath LM, Hall LO, Goldgof DB, Murtagh FR. Automatic segmentation of non-enhancing brain tumors in magnetic resonance images. Artif Intell Med. 2001; 21(1):43–63.CrossRefPubMed Fletcher-Heath LM, Hall LO, Goldgof DB, Murtagh FR. Automatic segmentation of non-enhancing brain tumors in magnetic resonance images. Artif Intell Med. 2001; 21(1):43–63.CrossRefPubMed
23.
go back to reference Kazerooni AF, Mohseni M, Rezaei S, Bakhshandehpour G, Rad HS. Multi-parametric (ADC/PWI/T2-w) image fusion approach for accurate semi-automatic segmentation of tumorous regions in glioblastoma multiforme. Magn Reson Mater Phys Biol Med. 2015; 28(1):13–22.CrossRef Kazerooni AF, Mohseni M, Rezaei S, Bakhshandehpour G, Rad HS. Multi-parametric (ADC/PWI/T2-w) image fusion approach for accurate semi-automatic segmentation of tumorous regions in glioblastoma multiforme. Magn Reson Mater Phys Biol Med. 2015; 28(1):13–22.CrossRef
24.
go back to reference Juan-Albarracín J, Fuster-Garcia E, Manjón JV, Robles M, Aparici F, Martí-Bonmatí L, García-Gómez JM. Automated glioblastoma segmentation based on a multiparametric structured unsupervised classification. PloS One. 2015; 10(5):0125143.CrossRef Juan-Albarracín J, Fuster-Garcia E, Manjón JV, Robles M, Aparici F, Martí-Bonmatí L, García-Gómez JM. Automated glioblastoma segmentation based on a multiparametric structured unsupervised classification. PloS One. 2015; 10(5):0125143.CrossRef
25.
go back to reference Menze BH, Van Leemput K, Lashkari D, Weber MA, Ayache N, Golland P. A generative model for brain tumor segmentation in multi-modal images. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, vol. 13. Berlin: Springer: 2010. p. 151–9. Menze BH, Van Leemput K, Lashkari D, Weber MA, Ayache N, Golland P. A generative model for brain tumor segmentation in multi-modal images. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, vol. 13. Berlin: Springer: 2010. p. 151–9.
26.
go back to reference Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a hidden markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging. 2001; 20(1):45–57.CrossRefPubMed Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a hidden markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging. 2001; 20(1):45–57.CrossRefPubMed
27.
go back to reference Nie J, Xue Z, Liu T, Young GS, Setayesh K, Guo L, Wong ST. Automated brain tumor segmentation using spatial accuracy-weighted hidden markov random field. Comput Med Imaging Graph. 2009; 33(6):431–41.CrossRefPubMedPubMedCentral Nie J, Xue Z, Liu T, Young GS, Setayesh K, Guo L, Wong ST. Automated brain tumor segmentation using spatial accuracy-weighted hidden markov random field. Comput Med Imaging Graph. 2009; 33(6):431–41.CrossRefPubMedPubMedCentral
28.
go back to reference Sauwen N, Sima DM, Van Cauter S, Veraart J, Leemans A, Maes F, Himmelreich U, Van Huffel S. Hierarchical non-negative matrix factorization to characterize brain tumor heterogeneity using multi-parametric MRI. NMR Biomed. 2015; 28(12):1599–624.CrossRefPubMed Sauwen N, Sima DM, Van Cauter S, Veraart J, Leemans A, Maes F, Himmelreich U, Van Huffel S. Hierarchical non-negative matrix factorization to characterize brain tumor heterogeneity using multi-parametric MRI. NMR Biomed. 2015; 28(12):1599–624.CrossRefPubMed
29.
go back to reference Ortega-Martorell S, Lisboa PJ, Vellido A, Simões RV, Pumarola M, Julià-Sapé M, Arús C. Convex non-negative matrix factorization for brain tumor delimitation from MRSI data. PloS One. 2012; 7(10):47824.CrossRef Ortega-Martorell S, Lisboa PJ, Vellido A, Simões RV, Pumarola M, Julià-Sapé M, Arús C. Convex non-negative matrix factorization for brain tumor delimitation from MRSI data. PloS One. 2012; 7(10):47824.CrossRef
30.
go back to reference Prastawa M, Bullitt E, Moon N, Van Leemput K, Gerig G. Automatic brain tumor segmentation by subject specific modification of atlas priors 1. Acad Radiol. 2003; 10(12):1341–8.CrossRefPubMedPubMedCentral Prastawa M, Bullitt E, Moon N, Van Leemput K, Gerig G. Automatic brain tumor segmentation by subject specific modification of atlas priors 1. Acad Radiol. 2003; 10(12):1341–8.CrossRefPubMedPubMedCentral
31.
go back to reference Saha BN, Ray N, Greiner R, Murtha A, Zhang H. Quick detection of brain tumors and edemas: A bounding box method using symmetry. Comput Med Imaging Graph. 2012; 36(2):95–107.CrossRefPubMed Saha BN, Ray N, Greiner R, Murtha A, Zhang H. Quick detection of brain tumors and edemas: A bounding box method using symmetry. Comput Med Imaging Graph. 2012; 36(2):95–107.CrossRefPubMed
32.
go back to reference Cordier N, Menze B, Delingette H, Ayache N. Patch-based segmentation of brain tissues. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin: Springer: 2013. p. 6–17. Cordier N, Menze B, Delingette H, Ayache N. Patch-based segmentation of brain tissues. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin: Springer: 2013. p. 6–17.
33.
go back to reference Kwon D, Shinohara RT, Akbari H, Davatzikos C. Combining generative models for multifocal glioma segmentation and registration. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin: Springer: 2014. p. 763–70. Kwon D, Shinohara RT, Akbari H, Davatzikos C. Combining generative models for multifocal glioma segmentation and registration. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin: Springer: 2014. p. 763–70.
34.
go back to reference Hamamci A, Kucuk N, Karaman K, Engin K, Unal G. Tumor-cut: segmentation of brain tumors on contrast enhanced MR images for radiosurgery applications. IEEE Trans Med Imaging. 2012; 31(3):790–804.CrossRefPubMed Hamamci A, Kucuk N, Karaman K, Engin K, Unal G. Tumor-cut: segmentation of brain tumors on contrast enhanced MR images for radiosurgery applications. IEEE Trans Med Imaging. 2012; 31(3):790–804.CrossRefPubMed
35.
go back to reference Havaei M, Jodoin PM, Larochelle H. Efficient interactive brain tumor segmentation as within-brain kNN classification. In: ICPR. Stockholm: 2014. p. 556–61. Havaei M, Jodoin PM, Larochelle H. Efficient interactive brain tumor segmentation as within-brain kNN classification. In: ICPR. Stockholm: 2014. p. 556–61.
36.
go back to reference Boxerman J, Schmainda K, Weisskoff R. Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. Am J Neuroradiol. 2006; 27(4):859–67.PubMed Boxerman J, Schmainda K, Weisskoff R. Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. Am J Neuroradiol. 2006; 27(4):859–67.PubMed
37.
go back to reference Veraart J, Sijbers J, Sunaert S, Leemans A, Jeurissen B. Weighted linear least squares estimation of diffusion MRI parameters: strengths, limitations, and pitfalls. NeuroImage. 2013; 81:335–46.CrossRefPubMed Veraart J, Sijbers J, Sunaert S, Leemans A, Jeurissen B. Weighted linear least squares estimation of diffusion MRI parameters: strengths, limitations, and pitfalls. NeuroImage. 2013; 81:335–46.CrossRefPubMed
38.
go back to reference Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P. Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging. 1997; 16(2):187–98.CrossRefPubMed Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P. Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging. 1997; 16(2):187–98.CrossRefPubMed
39.
go back to reference Wang YX, Zhang YJ. Nonnegative matrix factorization: A comprehensive review. IEEE Trans Knowl Data Eng. 2013; 25(6):1336–53.CrossRef Wang YX, Zhang YJ. Nonnegative matrix factorization: A comprehensive review. IEEE Trans Knowl Data Eng. 2013; 25(6):1336–53.CrossRef
40.
go back to reference Sorber L, Van Barel M, De Lathauwer L. Structured data fusion. IEEE J Selected Topics Signal Process. 2015; 9(4):586–600.CrossRef Sorber L, Van Barel M, De Lathauwer L. Structured data fusion. IEEE J Selected Topics Signal Process. 2015; 9(4):586–600.CrossRef
42.
go back to reference Nocedal J, Wright SJ. Numerical Optimization: Springer; 2006. ISBN: 0387400656. Nocedal J, Wright SJ. Numerical Optimization: Springer; 2006. ISBN: 0387400656.
43.
go back to reference Araújo MCU, Saldanha TCB, Galvão RKH, Yoneyama T, Chame HC, Visani V. The successive projections algorithm for variable selection in spectroscopic multicomponent analysis. Chemometrics Intell Lab Syst. 2001; 57(2):65–73.CrossRef Araújo MCU, Saldanha TCB, Galvão RKH, Yoneyama T, Chame HC, Visani V. The successive projections algorithm for variable selection in spectroscopic multicomponent analysis. Chemometrics Intell Lab Syst. 2001; 57(2):65–73.CrossRef
44.
go back to reference Gillis N. Successive nonnegative projection algorithm for robust nonnegative blind source separation. SIAM J Imaging Sci. 2014; 7(2):1420–50.CrossRef Gillis N. Successive nonnegative projection algorithm for robust nonnegative blind source separation. SIAM J Imaging Sci. 2014; 7(2):1420–50.CrossRef
45.
go back to reference Sauwen N, Acou M, Sima D, Maes F, Himmelreich U, Achten E, Van Huffel S. A semi-automated segmentation framework for MRI based brain tumor segmentation using regularized nonnegative matrix factorization. In: Proceedings of the 12th International Conference on Signal Image Technology & Internet Based Systems. Naples: IEEE: 2016. p. 88–95. Sauwen N, Acou M, Sima D, Maes F, Himmelreich U, Achten E, Van Huffel S. A semi-automated segmentation framework for MRI based brain tumor segmentation using regularized nonnegative matrix factorization. In: Proceedings of the 12th International Conference on Signal Image Technology & Internet Based Systems. Naples: IEEE: 2016. p. 88–95.
46.
go back to reference Bauer S, Wiest R, Nolte LP, Reyes M. A survey of MRI-based medical image analysis for brain tumor studies. Phys Med Biol. 2013; 58(13):97.CrossRef Bauer S, Wiest R, Nolte LP, Reyes M. A survey of MRI-based medical image analysis for brain tumor studies. Phys Med Biol. 2013; 58(13):97.CrossRef
47.
go back to reference Di Costanzo A, Scarabino T, Trojsi F, Giannatempo GM, Popolizio T, Catapano D, Bonavita S, Maggialetti N, Tosetti M, Salvolini U, d’Angelo V, Tedeschi G. Multiparametric 3T MR approach to the assessment of cerebral gliomas: tumor extent and malignancy. Neuroradiology. 2006; 48(9):622–31.CrossRefPubMed Di Costanzo A, Scarabino T, Trojsi F, Giannatempo GM, Popolizio T, Catapano D, Bonavita S, Maggialetti N, Tosetti M, Salvolini U, d’Angelo V, Tedeschi G. Multiparametric 3T MR approach to the assessment of cerebral gliomas: tumor extent and malignancy. Neuroradiology. 2006; 48(9):622–31.CrossRefPubMed
Metadata
Title
Semi-automated brain tumor segmentation on multi-parametric MRI using regularized non-negative matrix factorization
Authors
Nicolas Sauwen
Marjan Acou
Diana M. Sima
Jelle Veraart
Frederik Maes
Uwe Himmelreich
Eric Achten
Sabine Van Huffel
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2017
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/s12880-017-0198-4

Other articles of this Issue 1/2017

BMC Medical Imaging 1/2017 Go to the issue