Skip to main content
Top
Published in: BMC Medical Imaging 1/2017

Open Access 01-12-2017 | Research article

A comparison of pediatric and adult CT organ dose estimation methods

Authors: Yiming Gao, Brian Quinn, Usman Mahmood, Daniel Long, Yusuf Erdi, Jean St. Germain, Neeta Pandit-Taskar, X. George Xu, Wesley E. Bolch, Lawrence T. Dauer

Published in: BMC Medical Imaging | Issue 1/2017

Login to get access

Abstract

Background

Computed Tomography (CT) contributes up to 50% of the medical exposure to the United States population. Children are considered to be at higher risk of developing radiation-induced tumors due to the young age of exposure and increased tissue radiosensitivity. Organ dose estimation is essential for pediatric and adult patient cancer risk assessment. The objective of this study is to validate the VirtualDose software in comparison to currently available software and methods for pediatric and adult CT organ dose estimation.

Methods

Five age groups of pediatric patients and adult patients were simulated by three organ dose estimators. Head, chest, abdomen-pelvis, and chest-abdomen-pelvis CT scans were simulated, and doses to organs both inside and outside the scan range were compared. For adults, VirtualDose was compared against ImPACT and CT-Expo. For pediatric patients, VirtualDose was compared to CT-Expo and compared to size-based methods from literature. Pediatric to adult effective dose ratios were also calculated with VirtualDose, and were compared with the ranges of effective dose ratios provided in ImPACT.

Results

In-field organs see less than 60% difference in dose between dose estimators. For organs outside scan range or distributed organs, a five times’ difference can occur. VirtualDose agrees with the size-based methods within 20% difference for the organs investigated. Between VirtualDose and ImPACT, the pediatric to adult ratios for effective dose are compared, and less than 21% difference is observed for chest scan while more than 40% difference is observed for head-neck scan and abdomen-pelvis scan. For pediatric patients, 2 cm scan range change can lead to a five times dose difference in partially scanned organs.

Conclusions

VirtualDose is validated against CT-Expo and ImPACT with relatively small discrepancies in dose for organs inside scan range, while large discrepancies in dose are observed for organs outside scan range. Patient-specific organ dose estimation is possible using the size-based methods, and VirtualDose agrees with size-based method for the organs investigated. Careful range selection for CT protocols is necessary for organ dose optimization for pediatric and adult patients.
Literature
1.
go back to reference UNSCEAR. Sources And Effects Of Ionizing Radiation, UNSCEAR Publications. vol. I. New York: United Nations Scientific Committee on the Effects of Atomic Radiation; 2008. UNSCEAR. Sources And Effects Of Ionizing Radiation, UNSCEAR Publications. vol. I. New York: United Nations Scientific Committee on the Effects of Atomic Radiation; 2008.
2.
go back to reference NCRP. Ionizing Radiation Exposure of the Population of the United States. In: NCRP Publications. Bethesda, MD; 2009. NCRP. Ionizing Radiation Exposure of the Population of the United States. In: NCRP Publications. Bethesda, MD; 2009.
3.
go back to reference ICRP. Managing patient dose in computed tomography. ICRP Publication 87. Ann ICRP. 2000;30(4):1–86.CrossRef ICRP. Managing patient dose in computed tomography. ICRP Publication 87. Ann ICRP. 2000;30(4):1–86.CrossRef
4.
go back to reference Valentin J, ICRP. Managing patient dose in multi-detector computed tomography(MDCT). ICRP Publication 102. Ann ICRP. 2007;37(1):1–79.CrossRef Valentin J, ICRP. Managing patient dose in multi-detector computed tomography(MDCT). ICRP Publication 102. Ann ICRP. 2007;37(1):1–79.CrossRef
5.
go back to reference Dauer LT, Hricak H. Addressing the Challenge of Managing Radiation Use in Medical Imaging: Paradigm Shifts and Strategic Priorities. Oncology-Ny. 2014;28(3):243–+. Dauer LT, Hricak H. Addressing the Challenge of Managing Radiation Use in Medical Imaging: Paradigm Shifts and Strategic Priorities. Oncology-Ny. 2014;28(3):243–+.
8.
go back to reference ICRP. Recommendations of the International Commission on Radiological Protection. ICRP Publication 26. Annals ICRP. 1977;1(3):1–80. ICRP. Recommendations of the International Commission on Radiological Protection. ICRP Publication 26. Annals ICRP. 1977;1(3):1–80.
9.
go back to reference ICRP. 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. Ann ICRP. 1991;21(1-3):1–201.CrossRef ICRP. 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. Ann ICRP. 1991;21(1-3):1–201.CrossRef
10.
go back to reference ICRP. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann ICRP. 2007;37(2-4):1–332.CrossRef ICRP. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann ICRP. 2007;37(2-4):1–332.CrossRef
11.
go back to reference ICRP. Radiation Protection in Medicine. ICRP Publication 105. Ann ICRP. 2007;37(6):1–63.CrossRef ICRP. Radiation Protection in Medicine. ICRP Publication 105. Ann ICRP. 2007;37(6):1–63.CrossRef
13.
go back to reference Goske MJ, Applegate KE, Boylan J, Butler PF, Callahan MJ, Coley BD, Farley S, Frush DP, Hernanz-Schulman M, Jaramillo D, et al. The Image Gently campaign: working together to change practice. AJR Am J Roentgenol. 2008;190(2):273–4.CrossRefPubMed Goske MJ, Applegate KE, Boylan J, Butler PF, Callahan MJ, Coley BD, Farley S, Frush DP, Hernanz-Schulman M, Jaramillo D, et al. The Image Gently campaign: working together to change practice. AJR Am J Roentgenol. 2008;190(2):273–4.CrossRefPubMed
14.
go back to reference Brink JA, Amis ES. Image Wisely: A Campaign to Increase Awareness about Adult Radiation Protection. Radiology. 2010;257(3):601–2.CrossRefPubMed Brink JA, Amis ES. Image Wisely: A Campaign to Increase Awareness about Adult Radiation Protection. Radiology. 2010;257(3):601–2.CrossRefPubMed
15.
go back to reference UNSCEAR. Sources, Effects And Risks Of Ionizing Radiation, UNSCEAR Publications. vol. II. New York: United Nations Scientific Committee on the Effects of Atomic Radiation; 2013. UNSCEAR. Sources, Effects And Risks Of Ionizing Radiation, UNSCEAR Publications. vol. II. New York: United Nations Scientific Committee on the Effects of Atomic Radiation; 2013.
16.
go back to reference Brenner D, Elliston C, Hall E, Berdon W. Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol. 2001;176(2):289–96.CrossRefPubMed Brenner D, Elliston C, Hall E, Berdon W. Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol. 2001;176(2):289–96.CrossRefPubMed
17.
go back to reference Brenner DJ. Estimating cancer risks from pediatric CT: going from the qualitative to the quantitative. Pediatr Radiol. 2002;32(4):228–1. discussion 242-224.CrossRefPubMed Brenner DJ. Estimating cancer risks from pediatric CT: going from the qualitative to the quantitative. Pediatr Radiol. 2002;32(4):228–1. discussion 242-224.CrossRefPubMed
18.
go back to reference Turner AC, Zhang D, Khatonabadi M, Zankl M, DeMarco JJ, Cagnon CH, Cody DD, Stevens DM, McCollough CH, McNitt-Gray MF. The feasibility of patient size-corrected, scanner-independent organ dose estimates for abdominal CT exams. Med Phys. 2011;38(2):820–9.CrossRefPubMedPubMedCentral Turner AC, Zhang D, Khatonabadi M, Zankl M, DeMarco JJ, Cagnon CH, Cody DD, Stevens DM, McCollough CH, McNitt-Gray MF. The feasibility of patient size-corrected, scanner-independent organ dose estimates for abdominal CT exams. Med Phys. 2011;38(2):820–9.CrossRefPubMedPubMedCentral
19.
go back to reference Brady Z, Cain TM, Johnston PN. Comparison of organ dosimetry methods and effective dose calculation methods for paediatric CT. Australas Phys Eng Sci Med. 2012;35(2):117–34.CrossRefPubMed Brady Z, Cain TM, Johnston PN. Comparison of organ dosimetry methods and effective dose calculation methods for paediatric CT. Australas Phys Eng Sci Med. 2012;35(2):117–34.CrossRefPubMed
20.
go back to reference Lee C, Kim KP, Long DJ, Bolch WE. Organ doses for reference pediatric and adolescent patients undergoing computed tomography estimated by Monte Carlo simulation. Med Phys. 2012;39(4):2129–46.CrossRefPubMedPubMedCentral Lee C, Kim KP, Long DJ, Bolch WE. Organ doses for reference pediatric and adolescent patients undergoing computed tomography estimated by Monte Carlo simulation. Med Phys. 2012;39(4):2129–46.CrossRefPubMedPubMedCentral
21.
go back to reference Tian X, Li X, Segars WP, Frush DP, Paulson EK, Samei E. Dose coefficients in pediatric and adult abdominopelvic CT based on 100 patient models. Phys Med Biol. 2013;58(24):8755–68.CrossRefPubMed Tian X, Li X, Segars WP, Frush DP, Paulson EK, Samei E. Dose coefficients in pediatric and adult abdominopelvic CT based on 100 patient models. Phys Med Biol. 2013;58(24):8755–68.CrossRefPubMed
22.
go back to reference Kost SD, Fraser ND, Carver DE, Pickens DR, Price RR, Hernanz-Schulman M, Stabin MG. Patient-specific dose calculations for pediatric CT of the chest, abdomen and pelvis. Pediatr Radiol. 2015;45(12):1771–80.CrossRefPubMedPubMedCentral Kost SD, Fraser ND, Carver DE, Pickens DR, Price RR, Hernanz-Schulman M, Stabin MG. Patient-specific dose calculations for pediatric CT of the chest, abdomen and pelvis. Pediatr Radiol. 2015;45(12):1771–80.CrossRefPubMedPubMedCentral
23.
go back to reference Ding A, Gao Y, Liu H, Caracappa PF, Long DJ, Bolch WE, Liu B, Xu XG. VirtualDose: a software for reporting organ doses from CT for adult and pediatric patients. Phys Med Biol. 2015;60(14):5601–25.CrossRefPubMed Ding A, Gao Y, Liu H, Caracappa PF, Long DJ, Bolch WE, Liu B, Xu XG. VirtualDose: a software for reporting organ doses from CT for adult and pediatric patients. Phys Med Biol. 2015;60(14):5601–25.CrossRefPubMed
24.
go back to reference Papadakis AE, Perisinakis K, Damilakis J. Development of a method to estimate organ doses for pediatric CT examinations. Med Phys. 2016;43(5):2108.CrossRefPubMed Papadakis AE, Perisinakis K, Damilakis J. Development of a method to estimate organ doses for pediatric CT examinations. Med Phys. 2016;43(5):2108.CrossRefPubMed
25.
go back to reference AAPM. The Measurement, Reporting, and Management of Radiation Dose in CT. AAPM Report No. 96. College Park: AAPM Publications; 2008. Online. AAPM. The Measurement, Reporting, and Management of Radiation Dose in CT. AAPM Report No. 96. College Park: AAPM Publications; 2008. Online.
26.
go back to reference AAPM. Size-Specific Dose Estimates (SSDE) in Pediatric and Adult Body CT Examinations. AAPM Report No. 204. College Park: AAPM Publications; 2011. Online. AAPM. Size-Specific Dose Estimates (SSDE) in Pediatric and Adult Body CT Examinations. AAPM Report No. 204. College Park: AAPM Publications; 2011. Online.
27.
go back to reference AAPM. Use of Water Equivalent Diameter for Calculating Patient Size and Size-Specific Dose Estimates (SSDE) in CT. AAPM Report No. 220. College Park: AAPM Publications; 2014. Online. AAPM. Use of Water Equivalent Diameter for Calculating Patient Size and Size-Specific Dose Estimates (SSDE) in CT. AAPM Report No. 220. College Park: AAPM Publications; 2014. Online.
28.
go back to reference Tian X, Li X, Segars WP, Paulson EK, Frush DP, Samei E. Pediatric chest and abdominopelvic CT: organ dose estimation based on 42 patient models. Radiology. 2014;270(2):535–47.CrossRefPubMedPubMedCentral Tian X, Li X, Segars WP, Paulson EK, Frush DP, Samei E. Pediatric chest and abdominopelvic CT: organ dose estimation based on 42 patient models. Radiology. 2014;270(2):535–47.CrossRefPubMedPubMedCentral
29.
go back to reference Fahey FH, Palmer MR, Strauss KJ, Zimmerman RE, Badawi RD, Treves ST. Dosimetry and adequacy of CT-based attenuation correction for pediatric PET: phantom study. Radiology. 2007;243(1):96–104.CrossRefPubMed Fahey FH, Palmer MR, Strauss KJ, Zimmerman RE, Badawi RD, Treves ST. Dosimetry and adequacy of CT-based attenuation correction for pediatric PET: phantom study. Radiology. 2007;243(1):96–104.CrossRefPubMed
30.
go back to reference Fujii K, Aoyama T, Koyama S, Kawaura C. Comparative evaluation of organ and effective doses for paediatric patients with those for adults in chest and abdominal CT examinations. Br J Radiol. 2007;80(956):657–67.CrossRefPubMed Fujii K, Aoyama T, Koyama S, Kawaura C. Comparative evaluation of organ and effective doses for paediatric patients with those for adults in chest and abdominal CT examinations. Br J Radiol. 2007;80(956):657–67.CrossRefPubMed
31.
go back to reference Hollingsworth CL, Yoshizumi TT, Frush DP, Chan FP, Toncheva G, Nguyen G, Lowry CR, Hurwitz LM. Pediatric cardiac-gated CT angiography: assessment of radiation dose. AJR Am J Roentgenol. 2007;189(1):12–8.CrossRefPubMed Hollingsworth CL, Yoshizumi TT, Frush DP, Chan FP, Toncheva G, Nguyen G, Lowry CR, Hurwitz LM. Pediatric cardiac-gated CT angiography: assessment of radiation dose. AJR Am J Roentgenol. 2007;189(1):12–8.CrossRefPubMed
32.
go back to reference Nishizawa K, Mori S, Ohno M, Yanagawa N, Yoshida T, Akahane K, Iwai K, Wada S. Patient dose estimation for multi-detector-row CT examinations. Radiat Prot Dosim. 2008;128(1):98–105.CrossRef Nishizawa K, Mori S, Ohno M, Yanagawa N, Yoshida T, Akahane K, Iwai K, Wada S. Patient dose estimation for multi-detector-row CT examinations. Radiat Prot Dosim. 2008;128(1):98–105.CrossRef
33.
go back to reference Brisse HJ, Robilliard M, Savignoni A, Pierrat N, Gaboriaud G, De Rycke Y, Neuenschwander S, Aubert B, Rosenwald JC. Assessment of organ absorbed doses and estimation of effective doses from pediatric anthropomorphic phantom measurements for multi-detector row CT with and without automatic exposure control. Health Phys. 2009;97(4):303–14.CrossRefPubMed Brisse HJ, Robilliard M, Savignoni A, Pierrat N, Gaboriaud G, De Rycke Y, Neuenschwander S, Aubert B, Rosenwald JC. Assessment of organ absorbed doses and estimation of effective doses from pediatric anthropomorphic phantom measurements for multi-detector row CT with and without automatic exposure control. Health Phys. 2009;97(4):303–14.CrossRefPubMed
34.
go back to reference Huang B, Law MW, Khong PL. Whole-body PET/CT scanning: estimation of radiation dose and cancer risk. Radiology. 2009;251(1):166–74.CrossRefPubMed Huang B, Law MW, Khong PL. Whole-body PET/CT scanning: estimation of radiation dose and cancer risk. Radiology. 2009;251(1):166–74.CrossRefPubMed
35.
go back to reference Zhang D, Li X, Gao Y, Xu XG, Liu B. A method to acquire CT organ dose map using OSL dosimeters and ATOM anthropomorphic phantoms. Med Phys. 2013;40(8):081918.CrossRefPubMedPubMedCentral Zhang D, Li X, Gao Y, Xu XG, Liu B. A method to acquire CT organ dose map using OSL dosimeters and ATOM anthropomorphic phantoms. Med Phys. 2013;40(8):081918.CrossRefPubMedPubMedCentral
36.
go back to reference Pearce MS, Salotti JA, Little MP, McHugh K, Lee C, Kim KP, Howe NL, Ronckers CM, Rajaraman P, Craft AW, et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet. 2012;380(9840):499–505.CrossRefPubMedPubMedCentral Pearce MS, Salotti JA, Little MP, McHugh K, Lee C, Kim KP, Howe NL, Ronckers CM, Rajaraman P, Craft AW, et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet. 2012;380(9840):499–505.CrossRefPubMedPubMedCentral
37.
go back to reference Miglioretti DL, Johnson E, Williams A, Greenlee RT, Weinmann S, Solberg LI, Feigelson HS, Roblin D, Flynn MJ, Vanneman N, et al. The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk. JAMA Pediatr. 2013;167(8):700–7.CrossRefPubMedPubMedCentral Miglioretti DL, Johnson E, Williams A, Greenlee RT, Weinmann S, Solberg LI, Feigelson HS, Roblin D, Flynn MJ, Vanneman N, et al. The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk. JAMA Pediatr. 2013;167(8):700–7.CrossRefPubMedPubMedCentral
38.
go back to reference Pelowitz DB. MCNPX user’s manual, version 2.6.0. Los Alamos: Los Alamos National Laboratory; 2008. Pelowitz DB. MCNPX user’s manual, version 2.6.0. Los Alamos: Los Alamos National Laboratory; 2008.
39.
go back to reference Gu J, Bednarz B, Caracappa PF, Xu XG. The development, validation and application of a multi-detector CT (MDCT) scanner model for assessing organ doses to the pregnant patient and the fetus using Monte Carlo simulations. Phys Med Biol. 2009;54(9):2699–717.CrossRefPubMedPubMedCentral Gu J, Bednarz B, Caracappa PF, Xu XG. The development, validation and application of a multi-detector CT (MDCT) scanner model for assessing organ doses to the pregnant patient and the fetus using Monte Carlo simulations. Phys Med Biol. 2009;54(9):2699–717.CrossRefPubMedPubMedCentral
40.
go back to reference Turner AC, Zhang D, Kim HJ, DeMarco JJ, Cagnon CH, Angel E, Cody DD, Stevens DM, Primak AN, McCollough CH, et al. A method to generate equivalent energy spectra and filtration models based on measurement for multidetector CT Monte Carlo dosimetry simulations. Med Phys. 2009;36(6):2154–64.CrossRefPubMedPubMedCentral Turner AC, Zhang D, Kim HJ, DeMarco JJ, Cagnon CH, Angel E, Cody DD, Stevens DM, Primak AN, McCollough CH, et al. A method to generate equivalent energy spectra and filtration models based on measurement for multidetector CT Monte Carlo dosimetry simulations. Med Phys. 2009;36(6):2154–64.CrossRefPubMedPubMedCentral
41.
go back to reference Eckerman KF, Poston JWS, Bolch WE, Xu XG. The stylized computational phantoms developed at ORNL and elsewhere, Handbook of Anatomical Models for Radiation Dosimetry. New York: Taylor & Francis; 2010. p. 43–64. Eckerman KF, Poston JWS, Bolch WE, Xu XG. The stylized computational phantoms developed at ORNL and elsewhere, Handbook of Anatomical Models for Radiation Dosimetry. New York: Taylor & Francis; 2010. p. 43–64.
42.
go back to reference Xu XG. An exponential growth of computational phantom research in radiation protection, imaging, and radiotherapy: a review of the fifty-year history. Phys Med Biol. 2014;59(18):R233–302.CrossRefPubMedPubMedCentral Xu XG. An exponential growth of computational phantom research in radiation protection, imaging, and radiotherapy: a review of the fifty-year history. Phys Med Biol. 2014;59(18):R233–302.CrossRefPubMedPubMedCentral
43.
go back to reference Valentin J, Streffer C. Basic anatomical and physiological data for use in radiological protection: Reference values. ICRP Publication 89. Ann ICRP. 2002;32(3-4):1–265.CrossRef Valentin J, Streffer C. Basic anatomical and physiological data for use in radiological protection: Reference values. ICRP Publication 89. Ann ICRP. 2002;32(3-4):1–265.CrossRef
44.
go back to reference Zankl M, Fill U, Petoussi-Henss N, Regulla D. Organ dose conversion coefficients for external photon irradiation of male and female voxel models. Phys Med Biol. 2002;47(14):2367–85.CrossRef Zankl M, Fill U, Petoussi-Henss N, Regulla D. Organ dose conversion coefficients for external photon irradiation of male and female voxel models. Phys Med Biol. 2002;47(14):2367–85.CrossRef
45.
go back to reference Liu H, Gu J, Caracappa PF, Xu XG. Comparison of two types of adult phantoms in terms of organ doses from diagnostic CT procedures. Phys Med Biol. 2010;55(5):1441–51.CrossRefPubMed Liu H, Gu J, Caracappa PF, Xu XG. Comparison of two types of adult phantoms in terms of organ doses from diagnostic CT procedures. Phys Med Biol. 2010;55(5):1441–51.CrossRefPubMed
46.
go back to reference Lee C, Kim KP, Long D, Fisher R, Tien C, Simon SL, Bouville A, Bolch WE. Organ doses for reference adult male and female undergoing computed tomography estimated by Monte Carlo simulations. Med Phys. 2011;38(3):1196–206.CrossRefPubMedPubMedCentral Lee C, Kim KP, Long D, Fisher R, Tien C, Simon SL, Bouville A, Bolch WE. Organ doses for reference adult male and female undergoing computed tomography estimated by Monte Carlo simulations. Med Phys. 2011;38(3):1196–206.CrossRefPubMedPubMedCentral
47.
go back to reference Lee C, Lodwick D, Hurtado J, Pafundi D, Williams JL, Bolch WE. The UF family of reference hybrid phantoms for computational radiation dosimetry. Phys Med Biol. 2010;55(2):339–63.CrossRefPubMed Lee C, Lodwick D, Hurtado J, Pafundi D, Williams JL, Bolch WE. The UF family of reference hybrid phantoms for computational radiation dosimetry. Phys Med Biol. 2010;55(2):339–63.CrossRefPubMed
48.
go back to reference Xu XG, Taranenko V, Zhang J, Shi C. A boundary-representation method for designing whole-body radiation dosimetry models: pregnant females at the ends of three gestational periods--RPI-P3, -P6 and -P9. Phys Med Biol. 2007;52(23):7023–44.CrossRefPubMed Xu XG, Taranenko V, Zhang J, Shi C. A boundary-representation method for designing whole-body radiation dosimetry models: pregnant females at the ends of three gestational periods--RPI-P3, -P6 and -P9. Phys Med Biol. 2007;52(23):7023–44.CrossRefPubMed
49.
go back to reference Ding A, Mille MM, Liu T, Caracappa PF, Xu XG. Extension of RPI-adult male and female computational phantoms to obese patients and a Monte Carlo study of the effect on CT imaging dose. Phys Med Biol. 2012;57(9):2441–59.CrossRefPubMedPubMedCentral Ding A, Mille MM, Liu T, Caracappa PF, Xu XG. Extension of RPI-adult male and female computational phantoms to obese patients and a Monte Carlo study of the effect on CT imaging dose. Phys Med Biol. 2012;57(9):2441–59.CrossRefPubMedPubMedCentral
50.
go back to reference Segars WP, Bond J, Frush J, Hon S, Eckersley C, Williams CH, Feng J, Tward DJ, Ratnanather JT, Miller MI, et al. Population of anatomically variable 4D XCAT adult phantoms for imaging research and optimization. Med Phys. 2013;40(4):043701.CrossRefPubMedPubMedCentral Segars WP, Bond J, Frush J, Hon S, Eckersley C, Williams CH, Feng J, Tward DJ, Ratnanather JT, Miller MI, et al. Population of anatomically variable 4D XCAT adult phantoms for imaging research and optimization. Med Phys. 2013;40(4):043701.CrossRefPubMedPubMedCentral
51.
go back to reference Geyer AM, O’Reilly S, Lee C, Long DJ, Bolch WE. The UF/NCI family of hybrid computational phantoms representing the current US population of male and female children, adolescents, and adults--application to CT dosimetry. Phys Med Biol. 2014;59(18):5225–42.CrossRefPubMed Geyer AM, O’Reilly S, Lee C, Long DJ, Bolch WE. The UF/NCI family of hybrid computational phantoms representing the current US population of male and female children, adolescents, and adults--application to CT dosimetry. Phys Med Biol. 2014;59(18):5225–42.CrossRefPubMed
52.
go back to reference ImPACT. ImPACT CT dosimetry calculator, version 1.0.4. London: St. George’s Healthcare NHS Trust; 2011. ImPACT. ImPACT CT dosimetry calculator, version 1.0.4. London: St. George’s Healthcare NHS Trust; 2011.
53.
go back to reference Stamm G, Nagel HD. CT-Expo V2.4: a tool for dose evaluation in computed tomography. Hannover; 2014. Stamm G, Nagel HD. CT-Expo V2.4: a tool for dose evaluation in computed tomography. Hannover; 2014.
54.
go back to reference Turner AC, Zankl M, DeMarco JJ, Cagnon CH, Zhang D, Angel E, Cody DD, Stevens DM, McCollough CH, McNitt-Gray MF. The feasibility of a scanner-independent technique to estimate organ dose from MDCT scans: using CTDIvol to account for differences between scanners. Med Phys. 2010;37(4):1816–25.CrossRefPubMedPubMedCentral Turner AC, Zankl M, DeMarco JJ, Cagnon CH, Zhang D, Angel E, Cody DD, Stevens DM, McCollough CH, McNitt-Gray MF. The feasibility of a scanner-independent technique to estimate organ dose from MDCT scans: using CTDIvol to account for differences between scanners. Med Phys. 2010;37(4):1816–25.CrossRefPubMedPubMedCentral
55.
go back to reference Brix G, Nagel HD, Stamm G, Veit R, Lechel U, Griebel J, Galanski M. Radiation exposure in multi-slice versus single-slice spiral CT: results of a nationwide survey. Eur Radiol. 2003;13(8):1979–91.CrossRefPubMed Brix G, Nagel HD, Stamm G, Veit R, Lechel U, Griebel J, Galanski M. Radiation exposure in multi-slice versus single-slice spiral CT: results of a nationwide survey. Eur Radiol. 2003;13(8):1979–91.CrossRefPubMed
56.
go back to reference Zankl M, Panzer W, Petoussihenss N, Drexler G. Organ Doses for Children from Computed Tomographic Examinations. Radiat Prot Dosim. 1995;57(1-4):393–6.CrossRef Zankl M, Panzer W, Petoussihenss N, Drexler G. Organ Doses for Children from Computed Tomographic Examinations. Radiat Prot Dosim. 1995;57(1-4):393–6.CrossRef
57.
go back to reference Cristy M, Eckerman KF. Specific absorbed fractions of energy at various ages from internal photon sources (I. Methods). Oak Ridge National Laboratory: Oak Ridge; 1987. Cristy M, Eckerman KF. Specific absorbed fractions of energy at various ages from internal photon sources (I. Methods). Oak Ridge National Laboratory: Oak Ridge; 1987.
58.
go back to reference Khursheed A, Hillier MC, Shrimpton PC, Wall BF. Influence of patient age on normalized effective doses calculated for CT examinations. Br J Radiol. 2002;75(898):819–30.CrossRefPubMed Khursheed A, Hillier MC, Shrimpton PC, Wall BF. Influence of patient age on normalized effective doses calculated for CT examinations. Br J Radiol. 2002;75(898):819–30.CrossRefPubMed
59.
go back to reference Zhang J, Na YH, Caracappa PF, Xu XG. RPI-AM and RPI-AF, a pair of mesh-based, size-adjustable adult male and female computational phantoms using ICRP-89 parameters and their calculations for organ doses from monoenergetic photon beams. Phys Med Biol. 2009;54(19):5885–908.CrossRefPubMedPubMedCentral Zhang J, Na YH, Caracappa PF, Xu XG. RPI-AM and RPI-AF, a pair of mesh-based, size-adjustable adult male and female computational phantoms using ICRP-89 parameters and their calculations for organ doses from monoenergetic photon beams. Phys Med Biol. 2009;54(19):5885–908.CrossRefPubMedPubMedCentral
60.
go back to reference Zankl M, Drexler G, Petoussi-Henss N, Saito K. The calculation of dose from external photon exposures using reference human phantoms and Monte Carlo methods: Part VII. Organ doses due to parallel and environmental exposure geometries. 1997. Zankl M, Drexler G, Petoussi-Henss N, Saito K. The calculation of dose from external photon exposures using reference human phantoms and Monte Carlo methods: Part VII. Organ doses due to parallel and environmental exposure geometries. 1997.
61.
go back to reference Li X, Samei E, Segars WP, Sturgeon GM, Colsher JG, Toncheva G, Yoshizumi TT, Frush DP. Patient-specific radiation dose and cancer risk estimation in CT: part II. Application to patients. Med Phys. 2011;38(1):408–19.CrossRefPubMed Li X, Samei E, Segars WP, Sturgeon GM, Colsher JG, Toncheva G, Yoshizumi TT, Frush DP. Patient-specific radiation dose and cancer risk estimation in CT: part II. Application to patients. Med Phys. 2011;38(1):408–19.CrossRefPubMed
62.
go back to reference Kramer R, Khoury HJ, Vieira JW, Loureiro EC, Lima VJ, Lima FR, Hoff G. All about FAX: a Female Adult voXel phantom for Monte Carlo calculation in radiation protection dosimetry. Phys Med Biol. 2004;49(23):5203–16.CrossRefPubMed Kramer R, Khoury HJ, Vieira JW, Loureiro EC, Lima VJ, Lima FR, Hoff G. All about FAX: a Female Adult voXel phantom for Monte Carlo calculation in radiation protection dosimetry. Phys Med Biol. 2004;49(23):5203–16.CrossRefPubMed
63.
go back to reference Kramer R, Vieira JW, Khoury HJ, de Andrade Lima F. MAX meets ADAM: a dosimetric comparison between a voxel-based and a mathematical model for external exposure to photons. Phys Med Biol. 2004;49(6):887–910.CrossRefPubMed Kramer R, Vieira JW, Khoury HJ, de Andrade Lima F. MAX meets ADAM: a dosimetric comparison between a voxel-based and a mathematical model for external exposure to photons. Phys Med Biol. 2004;49(6):887–910.CrossRefPubMed
64.
go back to reference Groves AM, Owen KE, Courtney HM, Yates SJ, Goldstone KE, Blake GM, Dixon AK. 16-detector multislice CT: dosimetry estimation by TLD measurement compared with Monte Carlo simulation. Br J Radiol. 2004;77(920):662–5.CrossRefPubMed Groves AM, Owen KE, Courtney HM, Yates SJ, Goldstone KE, Blake GM, Dixon AK. 16-detector multislice CT: dosimetry estimation by TLD measurement compared with Monte Carlo simulation. Br J Radiol. 2004;77(920):662–5.CrossRefPubMed
65.
go back to reference Feng ST, Law MWM, Huang BS, Ng S, Li ZP, Meng QF, Khong PL. Radiation dose and cancer risk from pediatric CT examinations on 64-slice CT: A phantom study. Eur J Radiol. 2010;76(2):E19–23.CrossRefPubMed Feng ST, Law MWM, Huang BS, Ng S, Li ZP, Meng QF, Khong PL. Radiation dose and cancer risk from pediatric CT examinations on 64-slice CT: A phantom study. Eur J Radiol. 2010;76(2):E19–23.CrossRefPubMed
66.
go back to reference Moore BM, Brady SL, Mirro AE, Kaufman RA. Size-specific dose estimate (SSDE) provides a simple method to calculate organ dose for pediatric CT examinations. Med Phys. 2014;41(7):071917.CrossRefPubMedPubMedCentral Moore BM, Brady SL, Mirro AE, Kaufman RA. Size-specific dose estimate (SSDE) provides a simple method to calculate organ dose for pediatric CT examinations. Med Phys. 2014;41(7):071917.CrossRefPubMedPubMedCentral
Metadata
Title
A comparison of pediatric and adult CT organ dose estimation methods
Authors
Yiming Gao
Brian Quinn
Usman Mahmood
Daniel Long
Yusuf Erdi
Jean St. Germain
Neeta Pandit-Taskar
X. George Xu
Wesley E. Bolch
Lawrence T. Dauer
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2017
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/s12880-017-0199-3

Other articles of this Issue 1/2017

BMC Medical Imaging 1/2017 Go to the issue