Skip to main content
Top
Published in: BMC Medical Imaging 1/2017

Open Access 01-12-2017 | Research article

Developing a nomogram based on multiparametric magnetic resonance imaging for forecasting high-grade prostate cancer to reduce unnecessary biopsies within the prostate-specific antigen gray zone

Authors: Xiang-ke Niu, Jun Li, Susant Kumar Das, Yan Xiong, Chao-bing Yang, Tao Peng

Published in: BMC Medical Imaging | Issue 1/2017

Login to get access

Abstract

Background

Since 1980s the application of Prostate specific antigen (PSA) brought the revolution in prostate cancer diagnosis. However, it is important to underline that PSA is not the ideal screening tool due to its low specificity, which leads to the possible biopsy for the patient without High-grade prostate cancer (HGPCa). Therefore, the aim of this study was to establish a predictive nomogram for HGPCa in patients with PSA 4–10 ng/ml based on Prostate Imaging Reporting and Data System version 2 (PI-RADS v2), MRI-based prostate volume (PV), MRI-based PV-adjusted Prostate Specific Antigen Density (adjusted-PSAD) and other traditional classical parameters.

Methods

Between January 2014 and September 2015, Of 151 men who were eligible for analysis were formed the training cohort. A prediction model for HGPCa was built by using backward logistic regression and was presented on a nomogram. The prediction model was evaluated by a validation cohort between October 2015 and October 2016 (n = 74). The relationship between the nomogram-based risk-score as well as other parameters with Gleason score (GS) was evaluated. All patients underwent 12-core systematic biopsy and at least one core targeted biopsy with transrectal ultrasonographic guidance.

Results

The multivariate analysis revealed that patient age, PI-RADS v2 score and adjusted-PSAD were independent predictors for HGPCa. Logistic regression (LR) model had a larger AUC as compared with other parameters alone. The most discriminative cutoff value for LR model was 0.36, the sensitivity, specificity, positive predictive value and negative predictive value were 87.3, 78.4, 76.3, and 90.4%, respectively and the diagnostic performance measures retained similar values in the validation cohort (AUC 0.82 [95% CI, 0.76–0.89]). For all patients with HGPCa (n = 50), adjusted-PSAD and nomogram-based risk-score were positively correlated with the GS of HGPCa in PSA gray zone (r = 0.455, P = 0.002 and r = 0.509, P = 0.001, respectively).

Conclusion

The nomogram based on multiparametric magnetic resonance imaging (mp-MRI) for forecasting HGPCa is effective, which could reduce unnecessary prostate biopsies in patients with PSA 4–10 ng/ml and nomogram-based risk-score could provide a more robust parameter of assessing the aggressiveness of HGPCa in PSA gray zone.
Literature
1.
2.
go back to reference Schröder FH, Hugosson J, Roobol MJ, et al. Prostate-cancer mortality at 11 years of follow-up. N Engl J Med. 2012;366:981–90.CrossRefPubMed Schröder FH, Hugosson J, Roobol MJ, et al. Prostate-cancer mortality at 11 years of follow-up. N Engl J Med. 2012;366:981–90.CrossRefPubMed
3.
go back to reference Etzioni R, Penson DF, Legler JM, et al. Overdiagnosis due to prostate-specific antigen screening: lessons from U.S. prostate cancer incidence trends. J Natl Cancer Inst. 2002;94:981–90.CrossRefPubMed Etzioni R, Penson DF, Legler JM, et al. Overdiagnosis due to prostate-specific antigen screening: lessons from U.S. prostate cancer incidence trends. J Natl Cancer Inst. 2002;94:981–90.CrossRefPubMed
4.
go back to reference Draisma G, Etzioni R, Tsodikov A, et al. Lead time and overdiagnosis in prostate-specific antigen screening: importance of methods and context. J Natl Cancer Inst. 2009;101(6):374–83.CrossRefPubMedPubMedCentral Draisma G, Etzioni R, Tsodikov A, et al. Lead time and overdiagnosis in prostate-specific antigen screening: importance of methods and context. J Natl Cancer Inst. 2009;101(6):374–83.CrossRefPubMedPubMedCentral
5.
go back to reference Thompson IM, Ankerst DP, Chi C, et al. Operating characteristics of prostate-specific antigen in men with an initial PSA level of 3.0 ng/ml or lower. JAMA. 2005;294:66–70.CrossRefPubMed Thompson IM, Ankerst DP, Chi C, et al. Operating characteristics of prostate-specific antigen in men with an initial PSA level of 3.0 ng/ml or lower. JAMA. 2005;294:66–70.CrossRefPubMed
6.
go back to reference Vickers AJ, Savage C, O’Brien MF, Lilja H. Systematic review of pretreatment prostate-specific antigen velocity and doubling time as predictors for prostate cancer. J Clin Oncol. 2009;27:398–403.CrossRefPubMedPubMedCentral Vickers AJ, Savage C, O’Brien MF, Lilja H. Systematic review of pretreatment prostate-specific antigen velocity and doubling time as predictors for prostate cancer. J Clin Oncol. 2009;27:398–403.CrossRefPubMedPubMedCentral
7.
go back to reference McDonald ML, Parsons JK. 4-Kallikrein test and Kallikrein markers in prostate cancer screening. Urol Clin North Am. 2016;43:39–46.CrossRefPubMed McDonald ML, Parsons JK. 4-Kallikrein test and Kallikrein markers in prostate cancer screening. Urol Clin North Am. 2016;43:39–46.CrossRefPubMed
8.
go back to reference Van Neste L, Hendriks RJ, Dijkstra S, et al. Detection of high-grade prostate cancer using a urinary molecular biomarker-based risk score. Eur Urol. 2016;70:740–8.CrossRefPubMed Van Neste L, Hendriks RJ, Dijkstra S, et al. Detection of high-grade prostate cancer using a urinary molecular biomarker-based risk score. Eur Urol. 2016;70:740–8.CrossRefPubMed
9.
go back to reference Junker D, Quentin M, Nagele U, et al. Evaluation of the PI-RADS scoring system for mpMRI of the prostate: a whole-mount step-section analysis. World J Urol. 2015;33:1023–30.CrossRefPubMed Junker D, Quentin M, Nagele U, et al. Evaluation of the PI-RADS scoring system for mpMRI of the prostate: a whole-mount step-section analysis. World J Urol. 2015;33:1023–30.CrossRefPubMed
10.
go back to reference Park SY, Jung DC, Oh YT, et al. Prostate cancer: PI-RADS version 2 helps preoperatively predict clinically significant cancers. Radiology. 2016;280:108–16.CrossRefPubMed Park SY, Jung DC, Oh YT, et al. Prostate cancer: PI-RADS version 2 helps preoperatively predict clinically significant cancers. Radiology. 2016;280:108–16.CrossRefPubMed
11.
go back to reference Karademir I, Shen D, Peng Y, et al. Prostate volumes derived from MRI and volume-adjusted serum prostate-specific antigen: correlation with Gleason score of prostate cancer. AJR Am J Roentgenol. 2013;201:1041–8.CrossRefPubMedPubMedCentral Karademir I, Shen D, Peng Y, et al. Prostate volumes derived from MRI and volume-adjusted serum prostate-specific antigen: correlation with Gleason score of prostate cancer. AJR Am J Roentgenol. 2013;201:1041–8.CrossRefPubMedPubMedCentral
12.
go back to reference Liao S, Gao Y, Lian J, Shen D. Sparse patch-based label propagation for accurate prostate localization in CT images. IEEE Trans Med Imaging. 2013;32:419–34.CrossRefPubMed Liao S, Gao Y, Lian J, Shen D. Sparse patch-based label propagation for accurate prostate localization in CT images. IEEE Trans Med Imaging. 2013;32:419–34.CrossRefPubMed
13.
go back to reference Barrett T, Turkbey B, Choyke PL. PI-RADS version 2: what you need to know. Clin Radiol. 2015;70:1165–76.CrossRefPubMed Barrett T, Turkbey B, Choyke PL. PI-RADS version 2: what you need to know. Clin Radiol. 2015;70:1165–76.CrossRefPubMed
14.
go back to reference Puech P, Rouvière O, Renard-Penna R, et al. Prostate cancer diagnosis: multiparametric MR-targeted biopsy with cognitive and transrectal US-MR fusion guidance versus systematic biopsy--prospective multicenter study. Radiology. 2013;268:461–9.CrossRefPubMed Puech P, Rouvière O, Renard-Penna R, et al. Prostate cancer diagnosis: multiparametric MR-targeted biopsy with cognitive and transrectal US-MR fusion guidance versus systematic biopsy--prospective multicenter study. Radiology. 2013;268:461–9.CrossRefPubMed
15.
go back to reference Costa DN, Bloch BN, Yao DF, et al. Diagnosis of relevant prostate cancer using supplementary cores from magnetic resonance imaging-prompted areas following multiple failed biopsies. Magn Reson Imaging. 2013;31:947–52.CrossRefPubMedPubMedCentral Costa DN, Bloch BN, Yao DF, et al. Diagnosis of relevant prostate cancer using supplementary cores from magnetic resonance imaging-prompted areas following multiple failed biopsies. Magn Reson Imaging. 2013;31:947–52.CrossRefPubMedPubMedCentral
16.
go back to reference Vickers AJ, Cronin AM, Roobol MJ, et al. The relationship between prostate-specific antigen and prostate cancer risk: the Prostate Biopsy Collaborative Group. Clin Cancer Res. 2010;16:4374–81.CrossRefPubMedPubMedCentral Vickers AJ, Cronin AM, Roobol MJ, et al. The relationship between prostate-specific antigen and prostate cancer risk: the Prostate Biopsy Collaborative Group. Clin Cancer Res. 2010;16:4374–81.CrossRefPubMedPubMedCentral
17.
go back to reference Villers A, Lemaitre L, Haffner J, Puech P. Current status of MRI for the diagnosis, staging and prognosis of prostate cancer: implications for focal therapy and active surveillance. Curr Opin Urol. 2009;19:274–82.CrossRefPubMed Villers A, Lemaitre L, Haffner J, Puech P. Current status of MRI for the diagnosis, staging and prognosis of prostate cancer: implications for focal therapy and active surveillance. Curr Opin Urol. 2009;19:274–82.CrossRefPubMed
18.
go back to reference Barentsz JO, Weinreb JC, Verma S, et al. Synopsis of the PI-RADS v2 guidelines for multiparametric prostate magnetic resonance imaging and recommendations for use. Eur Urol. 2016;69:41–9.CrossRefPubMed Barentsz JO, Weinreb JC, Verma S, et al. Synopsis of the PI-RADS v2 guidelines for multiparametric prostate magnetic resonance imaging and recommendations for use. Eur Urol. 2016;69:41–9.CrossRefPubMed
19.
go back to reference Woo S, Kim SY, Lee J, Kim SH, Cho JY. PI-RADS version 2 for prediction of pathological downgrading after radical prostatectomy: a preliminary study in patients with biopsy-proven Gleason Score 7 (3 + 4) prostate cancer. Eur Radiol. 2016;26:3580–7.CrossRefPubMed Woo S, Kim SY, Lee J, Kim SH, Cho JY. PI-RADS version 2 for prediction of pathological downgrading after radical prostatectomy: a preliminary study in patients with biopsy-proven Gleason Score 7 (3 + 4) prostate cancer. Eur Radiol. 2016;26:3580–7.CrossRefPubMed
20.
go back to reference de Rooij M, Hamoen EH, Fütterer JJ, Barentsz JO, Rovers MM. Accuracy of multiparametric MRI for prostate cancer detection: a meta-analysis. AJR Am J Roentgenol. 2014;202:343–51.CrossRefPubMed de Rooij M, Hamoen EH, Fütterer JJ, Barentsz JO, Rovers MM. Accuracy of multiparametric MRI for prostate cancer detection: a meta-analysis. AJR Am J Roentgenol. 2014;202:343–51.CrossRefPubMed
21.
go back to reference Washino S, Okochi T, Saito K, et al. Combination of prostate imaging reporting and data system (PI-RADS) score and prostate-specific antigen (PSA) density predicts biopsy outcome in prostate biopsy naïve patients. BJU Int. 2017;119:225–33.CrossRefPubMed Washino S, Okochi T, Saito K, et al. Combination of prostate imaging reporting and data system (PI-RADS) score and prostate-specific antigen (PSA) density predicts biopsy outcome in prostate biopsy naïve patients. BJU Int. 2017;119:225–33.CrossRefPubMed
22.
go back to reference Tombal B, Querton M, de Nayer P, et al. Free/total PSA ratio does not improve prediction of pathologic stage and biochemical recurrence after radical prostatectomy. Urology. 2002;59:256–60.CrossRefPubMed Tombal B, Querton M, de Nayer P, et al. Free/total PSA ratio does not improve prediction of pathologic stage and biochemical recurrence after radical prostatectomy. Urology. 2002;59:256–60.CrossRefPubMed
23.
go back to reference Saema A, Kochakarn W, Lertsithichai P. PSA density and prostate cancer detection. J Med Assoc Thai. 2012;95:661–6.PubMed Saema A, Kochakarn W, Lertsithichai P. PSA density and prostate cancer detection. J Med Assoc Thai. 2012;95:661–6.PubMed
24.
go back to reference Zheng XY, Xie LP, Wang YY, et al. The use of prostate specific antigen (PSA) density in detecting prostate cancer in Chinese men with PSA levels of 4–10 ng/mL. J Cancer Res Clin Oncol. 2008;134:1207–10.CrossRefPubMed Zheng XY, Xie LP, Wang YY, et al. The use of prostate specific antigen (PSA) density in detecting prostate cancer in Chinese men with PSA levels of 4–10 ng/mL. J Cancer Res Clin Oncol. 2008;134:1207–10.CrossRefPubMed
25.
go back to reference Lee JS, Chung BH. Transrectal ultrasound versus magnetic resonance imaging in the estimation of prostate volume as compared with radical prostatectomy specimens. Urol Int. 2007;78:323–7.CrossRefPubMed Lee JS, Chung BH. Transrectal ultrasound versus magnetic resonance imaging in the estimation of prostate volume as compared with radical prostatectomy specimens. Urol Int. 2007;78:323–7.CrossRefPubMed
26.
go back to reference Jeong CW, Park HK, Hong SK, Byun SS, Lee HJ, Lee SE. Comparison of prostate volume measured by transrectal ultrasonography and MRI with the actual prostate volume measured after radical prostatectomy. Urol Int. 2008;81:179–85.CrossRefPubMed Jeong CW, Park HK, Hong SK, Byun SS, Lee HJ, Lee SE. Comparison of prostate volume measured by transrectal ultrasonography and MRI with the actual prostate volume measured after radical prostatectomy. Urol Int. 2008;81:179–85.CrossRefPubMed
27.
go back to reference Hendriks RJ, Dijkstra S, Jannink SA, et al. Comparative analysis of prostate cancer specific biomarkers PCA3 and ERG in whole urine, urinary sediments and exosomes. Clin Chem Lab Med. 2016;54:483–92.CrossRefPubMed Hendriks RJ, Dijkstra S, Jannink SA, et al. Comparative analysis of prostate cancer specific biomarkers PCA3 and ERG in whole urine, urinary sediments and exosomes. Clin Chem Lab Med. 2016;54:483–92.CrossRefPubMed
28.
go back to reference Fang D, Ren D, Zhao C, et al. Prevalence and risk factors of prostate cancer in Chinese Men with PSA 4–10 ng/mL Who underwent TRUS-guided prostate biopsy: the utilization of PAMD score. Biomed Res Int. 2015;2015:596797.PubMedPubMedCentral Fang D, Ren D, Zhao C, et al. Prevalence and risk factors of prostate cancer in Chinese Men with PSA 4–10 ng/mL Who underwent TRUS-guided prostate biopsy: the utilization of PAMD score. Biomed Res Int. 2015;2015:596797.PubMedPubMedCentral
30.
go back to reference Albertsen PC, Hanley JA, Fine J. 20-year outcomes following conservative management of clinically localized prostate cancer. JAMA. 2005;293:2095–101.CrossRefPubMed Albertsen PC, Hanley JA, Fine J. 20-year outcomes following conservative management of clinically localized prostate cancer. JAMA. 2005;293:2095–101.CrossRefPubMed
31.
go back to reference Litjens GJ, Hambrock T, Hulsbergen-van de Kaa C, Barentsz JO, Huisman HJ. Interpatient variation in normal peripheral zone apparent diffusion coefficient: effect on the prediction of prostate cancer aggressiveness. Radiology. 2012;265:260–6.CrossRefPubMed Litjens GJ, Hambrock T, Hulsbergen-van de Kaa C, Barentsz JO, Huisman HJ. Interpatient variation in normal peripheral zone apparent diffusion coefficient: effect on the prediction of prostate cancer aggressiveness. Radiology. 2012;265:260–6.CrossRefPubMed
32.
go back to reference Shariat SF, Karakiewicz PI, Suardi N, Kattan MW. Comparison of nomograms with other methods for predicting outcomes in prostate cancer: a critical analysis of the literature. Clin Cancer Res. 2008;14:4400–7.CrossRefPubMed Shariat SF, Karakiewicz PI, Suardi N, Kattan MW. Comparison of nomograms with other methods for predicting outcomes in prostate cancer: a critical analysis of the literature. Clin Cancer Res. 2008;14:4400–7.CrossRefPubMed
Metadata
Title
Developing a nomogram based on multiparametric magnetic resonance imaging for forecasting high-grade prostate cancer to reduce unnecessary biopsies within the prostate-specific antigen gray zone
Authors
Xiang-ke Niu
Jun Li
Susant Kumar Das
Yan Xiong
Chao-bing Yang
Tao Peng
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2017
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/s12880-017-0184-x

Other articles of this Issue 1/2017

BMC Medical Imaging 1/2017 Go to the issue