Skip to main content
Top
Published in: BMC Medical Imaging 1/2015

Open Access 01-12-2015 | Research article

New quantitative classification of the anatomical relationship between impacted third molars and the inferior alveolar nerve

Authors: Wei-Quan Wang, Michael Y. C. Chen, Heng-Li Huang, Lih-Jyh Fuh, Ming-Tzu Tsai, Jui-Ting Hsu

Published in: BMC Medical Imaging | Issue 1/2015

Login to get access

Abstract

Background

Before extracting impacted lower third molars, dentists must first identify the spatial relationship between the inferior alveolar nerve (IAN) and an impacted lower third molar to prevent nerve injury from the extraction. Nevertheless, the current method for describing the spatial relationship between the IAN and an impacted lower third molar is deficient. Therefore, the objectives of this study were to: (1) evaluate the relative position between impacted lower third molars and the IAN; and (2) investigate the relative position between impacted lower third molars and the IAN by using a cylindrical coordinate system.

Methods

From the radiology department’s database, we selected computed tomography images of 137 lower third molars (from 75 patients) requiring removal and applied a Cartesian coordinate system by using Mimics, a medical imaging software application, to measure the distribution between impacted mandibular third molars and the IAN. In addition, the orientation of the lower third molar to the IAN was also measured, but by using a cylindrical coordinate system with the IAN as the origin.

Results

According to the Cartesian coordinate system, most of the IAN runs through the inferior side of the third molar (78.6 %), followed by the lingual side (11.8 %), and the buccal side (8.9 %); only 0.7 % is positioned between the roots. Unlike the Cartesian coordinate system, the cylindrical coordinate system clearly identified the relative position, r and θ, between the IAN and lower third molar.

Conclusions

Using the cylindrical coordinate system to present the relationship between the IAN and lower third molar as (r, θ) might provide clinical practitioners with a more explicit and objective description of the relative position of both sites. However, comprehensive research and cautious application of this system remain necessary.
Literature
1.
go back to reference Au AH, Choi SW, Cheung CW, Leung YY. The efficacy and clinical safety of various analgesiccombinations for post-operative pain after third molar surgery: A systematic review and meta-analysis. PLoS One. 2015;10(6):e0127611.PubMedCentralCrossRefPubMed Au AH, Choi SW, Cheung CW, Leung YY. The efficacy and clinical safety of various analgesiccombinations for post-operative pain after third molar surgery: A systematic review and meta-analysis. PLoS One. 2015;10(6):e0127611.PubMedCentralCrossRefPubMed
2.
go back to reference Bouloux GF, Steed MB, Perciaccante VJ. Complications of third molar surgery. Oral Maxillofac Surg Clin North Am. 2007;19(1):117.CrossRefPubMed Bouloux GF, Steed MB, Perciaccante VJ. Complications of third molar surgery. Oral Maxillofac Surg Clin North Am. 2007;19(1):117.CrossRefPubMed
3.
go back to reference Tymofiyeva O, Rottner K, Jakob P, Richter EJ, Proff P. Three-dimensional localization of impacted teeth using magnetic resonance imaging. Clin Oral Investig. 2010;14(2):169–76.CrossRefPubMed Tymofiyeva O, Rottner K, Jakob P, Richter EJ, Proff P. Three-dimensional localization of impacted teeth using magnetic resonance imaging. Clin Oral Investig. 2010;14(2):169–76.CrossRefPubMed
4.
go back to reference Gaddipati R, Ramisetty S, Vura N, Kanduri RR, Gunda VK. Impacted mandibular third molars and their influence on mandibular angle and condyle fractures–A retrospective study. J Craniomaxillofac Surg. 2014;42(7):1102–5.CrossRefPubMed Gaddipati R, Ramisetty S, Vura N, Kanduri RR, Gunda VK. Impacted mandibular third molars and their influence on mandibular angle and condyle fractures–A retrospective study. J Craniomaxillofac Surg. 2014;42(7):1102–5.CrossRefPubMed
5.
go back to reference Engelke W, Beltrán V, Cantín M, Choi E-J, Navarro P, Fuentes R. Removal of impacted mandibular third molars using an inward fragmentation technique (IFT)–Method and first results. J Craniomaxillofac Surg. 2014;42(3):213–9.CrossRefPubMed Engelke W, Beltrán V, Cantín M, Choi E-J, Navarro P, Fuentes R. Removal of impacted mandibular third molars using an inward fragmentation technique (IFT)–Method and first results. J Craniomaxillofac Surg. 2014;42(3):213–9.CrossRefPubMed
6.
go back to reference Susarla SM, Blaeser BF, Magalnick D. Third molar surgery and associated complications. Oral Maxillofac Surg Clin North Am. 2003;15(2):177–86.CrossRefPubMed Susarla SM, Blaeser BF, Magalnick D. Third molar surgery and associated complications. Oral Maxillofac Surg Clin North Am. 2003;15(2):177–86.CrossRefPubMed
7.
go back to reference Robert RC, Bacchetti P, Pogrel MA. Frequency of trigeminal nerve injuries following third molar removal. J Oral Maxillofac Surg. 2005;63(6):732–5.CrossRefPubMed Robert RC, Bacchetti P, Pogrel MA. Frequency of trigeminal nerve injuries following third molar removal. J Oral Maxillofac Surg. 2005;63(6):732–5.CrossRefPubMed
8.
go back to reference Tay A, Zuniga J. Clinical characteristics of trigeminal nerve injury referrals to a university centre. Int J Oral Maxillofac Surg. 2007;36(10):922–7.CrossRefPubMed Tay A, Zuniga J. Clinical characteristics of trigeminal nerve injury referrals to a university centre. Int J Oral Maxillofac Surg. 2007;36(10):922–7.CrossRefPubMed
9.
go back to reference Monaco G, Montevecchi M, Bonetti GA, Gatto MR, Checchi L. Reliability of panoramic radiography in evaluating the topographic relationship between the mandibular canal and impacted third molars. J Am Dent Assoc. 2004;135(3):312–8.CrossRefPubMed Monaco G, Montevecchi M, Bonetti GA, Gatto MR, Checchi L. Reliability of panoramic radiography in evaluating the topographic relationship between the mandibular canal and impacted third molars. J Am Dent Assoc. 2004;135(3):312–8.CrossRefPubMed
10.
go back to reference Kipp DP, Goldstein BH, Weiss Jr W. Dysesthesia after mandibular third molar surgery: a retrospective study and analysis of 1,377 surgical procedures. J Am Dent Assoc. 1980;100(2):185–92.CrossRefPubMed Kipp DP, Goldstein BH, Weiss Jr W. Dysesthesia after mandibular third molar surgery: a retrospective study and analysis of 1,377 surgical procedures. J Am Dent Assoc. 1980;100(2):185–92.CrossRefPubMed
11.
go back to reference Rud J. Third molar surgery: relationship of root to mandibular canal and injuries to the inferior dental nerve. Tandlaegebladet. 1983;87(18):619.PubMed Rud J. Third molar surgery: relationship of root to mandibular canal and injuries to the inferior dental nerve. Tandlaegebladet. 1983;87(18):619.PubMed
12.
go back to reference Chiapasco M, De Cicco L, Marrone G. Side effects and complications associated with third molar surgery. Oral Surg Oral Med Oral Pathol. 1993;76(4):412–20.CrossRefPubMed Chiapasco M, De Cicco L, Marrone G. Side effects and complications associated with third molar surgery. Oral Surg Oral Med Oral Pathol. 1993;76(4):412–20.CrossRefPubMed
13.
go back to reference Sameshima GT, Asgarifar KO. Assessment of root resorption and root shape: periapical vs panoramic films. Angle Orthod. 2001;71(3):185–9.PubMed Sameshima GT, Asgarifar KO. Assessment of root resorption and root shape: periapical vs panoramic films. Angle Orthod. 2001;71(3):185–9.PubMed
14.
go back to reference Nakagawa Y, Ishii H, Nomura Y, Watanabe NY, Hoshiba D, Kobayashi K, et al. Third molar position: reliability of panoramic radiography. J Oral Maxillofac Surg. 2007;65(7):1303–8.CrossRefPubMed Nakagawa Y, Ishii H, Nomura Y, Watanabe NY, Hoshiba D, Kobayashi K, et al. Third molar position: reliability of panoramic radiography. J Oral Maxillofac Surg. 2007;65(7):1303–8.CrossRefPubMed
15.
go back to reference Maegawa H, Sano K, Kitagawa Y, Ogasawara T, Miyauchi K, Sekine J, et al. Preoperative assessment of the relationship between the mandibular third molar and the mandibular canal by axial computed tomography with coronal and sagittal reconstruction. Oral Surg, Oral Med, Oral Pathol, Oral Radiol Endodontol. 2003;96(5):639–46.CrossRef Maegawa H, Sano K, Kitagawa Y, Ogasawara T, Miyauchi K, Sekine J, et al. Preoperative assessment of the relationship between the mandibular third molar and the mandibular canal by axial computed tomography with coronal and sagittal reconstruction. Oral Surg, Oral Med, Oral Pathol, Oral Radiol Endodontol. 2003;96(5):639–46.CrossRef
16.
go back to reference Ghaeminia H, Meijer GJ, Soehardi A, Borstlap WA, Mulder J, Berge SJ. Position of the impacted third molar in relation to the mandibular canal. Diagnostic accuracy of cone beam computed tomography compared with panoramic radiography. Int J Oral Maxillofac Surg. 2009;38(9):964–71.CrossRefPubMed Ghaeminia H, Meijer GJ, Soehardi A, Borstlap WA, Mulder J, Berge SJ. Position of the impacted third molar in relation to the mandibular canal. Diagnostic accuracy of cone beam computed tomography compared with panoramic radiography. Int J Oral Maxillofac Surg. 2009;38(9):964–71.CrossRefPubMed
17.
go back to reference Ohman A, Kivijarvi K, Blomback U, Flygare L. Pre-operative radiographic evaluation of lower third molars with computed tomography. Dentomaxillofac Radiol. 2006;35(1):30–5. Ohman A, Kivijarvi K, Blomback U, Flygare L. Pre-operative radiographic evaluation of lower third molars with computed tomography. Dentomaxillofac Radiol. 2006;35(1):30–5.
18.
go back to reference Nakayama K, Nonoyama M, Takaki Y, Kagawa T, Yuasa K, Izumi K, et al. Assessment of the relationship between impacted mandibular third molars and inferior alveolar nerve with dental 3-dimensional computed tomography. J Oral Maxillofac Surg. 2009;67(12):2587–91.CrossRefPubMed Nakayama K, Nonoyama M, Takaki Y, Kagawa T, Yuasa K, Izumi K, et al. Assessment of the relationship between impacted mandibular third molars and inferior alveolar nerve with dental 3-dimensional computed tomography. J Oral Maxillofac Surg. 2009;67(12):2587–91.CrossRefPubMed
19.
go back to reference Byun B-R, Kim Y-I, Yamaguchi T, Maki K, Ko C-C, Hwang D-S, et al. Quantitative skeletal maturation estimation using cone-beam computed tomography-generated cervical vertebral images: a pilot study in 5-to 18-year-old Japanese children. Clin Oral Investig. 2015;19(8):2133–40.CrossRefPubMed Byun B-R, Kim Y-I, Yamaguchi T, Maki K, Ko C-C, Hwang D-S, et al. Quantitative skeletal maturation estimation using cone-beam computed tomography-generated cervical vertebral images: a pilot study in 5-to 18-year-old Japanese children. Clin Oral Investig. 2015;19(8):2133–40.CrossRefPubMed
20.
go back to reference Zhao D, Chen X, Yue L, Liu W, Mo A, Yu H, et al. Assessment of residual alveolar bone volume in hemodialysis patients using CBCT. Clin Oral Investig. 2015;9(7):1619–24.CrossRef Zhao D, Chen X, Yue L, Liu W, Mo A, Yu H, et al. Assessment of residual alveolar bone volume in hemodialysis patients using CBCT. Clin Oral Investig. 2015;9(7):1619–24.CrossRef
22.
go back to reference Chang H-W, Huang H-L, Yu J-H, Hsu J-T, Li Y-F, Wu Y-F. Effects of orthodontic tooth movement on alveolar bone density. Clin Oral Investig. 2012;16(3):679–88.CrossRefPubMed Chang H-W, Huang H-L, Yu J-H, Hsu J-T, Li Y-F, Wu Y-F. Effects of orthodontic tooth movement on alveolar bone density. Clin Oral Investig. 2012;16(3):679–88.CrossRefPubMed
23.
go back to reference Hsu J-T, Chang H-W, Huang H-L, Yu J-H, Li Y-F, Tu M-G. Bone density changes around teeth during orthodontic treatment. Clin Oral Investig. 2011;15(4):511–9.CrossRefPubMed Hsu J-T, Chang H-W, Huang H-L, Yu J-H, Li Y-F, Tu M-G. Bone density changes around teeth during orthodontic treatment. Clin Oral Investig. 2011;15(4):511–9.CrossRefPubMed
24.
go back to reference Hsu J-T, Chen Y-J, Ho J-T, Huang H-L, Wang S-P, Cheng F-C, et al. A comparison of micro-CT and dental CT in assessing cortical bone morphology and trabecular bone microarchitecture. 2014;9(9):e107545. Hsu J-T, Chen Y-J, Ho J-T, Huang H-L, Wang S-P, Cheng F-C, et al. A comparison of micro-CT and dental CT in assessing cortical bone morphology and trabecular bone microarchitecture. 2014;9(9):e107545.
25.
go back to reference Hsu J-T, Wang S-P, Huang H-L, Chen Y-J, Wu J, Tsai M-T. The assessment of trabecular bone parameters and cortical bone strength: A comparison of micro-CT and dental cone-beam CT. J Biomech. 2013;46(15):2611–8.CrossRefPubMed Hsu J-T, Wang S-P, Huang H-L, Chen Y-J, Wu J, Tsai M-T. The assessment of trabecular bone parameters and cortical bone strength: A comparison of micro-CT and dental cone-beam CT. J Biomech. 2013;46(15):2611–8.CrossRefPubMed
26.
go back to reference Tantanapornkul W, Okouchi K, Fujiwara Y, Yamashiro M, Maruoka Y, Ohbayashi N, et al. A comparative study of cone-beam computed tomography and conventional panoramic radiography in assessing the topographic relationship between the mandibular canal and impacted third molars. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;103(2):253–9.CrossRefPubMed Tantanapornkul W, Okouchi K, Fujiwara Y, Yamashiro M, Maruoka Y, Ohbayashi N, et al. A comparative study of cone-beam computed tomography and conventional panoramic radiography in assessing the topographic relationship between the mandibular canal and impacted third molars. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;103(2):253–9.CrossRefPubMed
27.
go back to reference Ueda M, Nakamori K, Shiratori K, Igarashi T, Sasaki T, Anbo N, et al. Clinical significance of computed tomographic assessment and anatomic features of the inferior alveolar canal as risk factors for injury of the inferior alveolar nerve at third molar surgery. J Oral Maxillofac Surg. 2012;70(3):514–20.CrossRefPubMed Ueda M, Nakamori K, Shiratori K, Igarashi T, Sasaki T, Anbo N, et al. Clinical significance of computed tomographic assessment and anatomic features of the inferior alveolar canal as risk factors for injury of the inferior alveolar nerve at third molar surgery. J Oral Maxillofac Surg. 2012;70(3):514–20.CrossRefPubMed
28.
go back to reference de Melo Albert DG, Gomes AC, do Egito Vasconcelos BC, de Oliveirae Silva ED, Holanda GZ. Comparison of orthopantomographs and conventional tomography images for assessing the relationship between impacted lower third molars and the mandibular canal. J Oral Maxillofac Surg. 2006;64(7):1030–7.CrossRefPubMed de Melo Albert DG, Gomes AC, do Egito Vasconcelos BC, de Oliveirae Silva ED, Holanda GZ. Comparison of orthopantomographs and conventional tomography images for assessing the relationship between impacted lower third molars and the mandibular canal. J Oral Maxillofac Surg. 2006;64(7):1030–7.CrossRefPubMed
29.
go back to reference Sato H, Kawamura A, Yamaguchi M, Kasai K. Relationship between masticatory function and internal structure of the mandible based on computed tomography findings. Am J Orthod Dentofacial Orthop. 2005;128(6):766–73.CrossRefPubMed Sato H, Kawamura A, Yamaguchi M, Kasai K. Relationship between masticatory function and internal structure of the mandible based on computed tomography findings. Am J Orthod Dentofacial Orthop. 2005;128(6):766–73.CrossRefPubMed
30.
go back to reference Miller CS, Nummikoski PV, Barnett DA, Langlais RP. Cross-sectional tomography. A diagnostic technique for determining the buccolingual relationship of impacted mandibular third molars and the inferior alveolar neurovascular bundle. Oral Surg Oral Med Oral Pathol. 1990;70(6):791–7.CrossRefPubMed Miller CS, Nummikoski PV, Barnett DA, Langlais RP. Cross-sectional tomography. A diagnostic technique for determining the buccolingual relationship of impacted mandibular third molars and the inferior alveolar neurovascular bundle. Oral Surg Oral Med Oral Pathol. 1990;70(6):791–7.CrossRefPubMed
Metadata
Title
New quantitative classification of the anatomical relationship between impacted third molars and the inferior alveolar nerve
Authors
Wei-Quan Wang
Michael Y. C. Chen
Heng-Li Huang
Lih-Jyh Fuh
Ming-Tzu Tsai
Jui-Ting Hsu
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2015
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/s12880-015-0101-0

Other articles of this Issue 1/2015

BMC Medical Imaging 1/2015 Go to the issue