Skip to main content
Top
Published in: BMC Infectious Diseases 1/2022

Open Access 01-12-2022 | Polio Virus | Research

Circulating vaccine derived polio virus type 1 outbreak, Saadah governorate, Yemen, 2020

Authors: Mutahar Ahmed Al-Qassimi, Mohammed Al Amad, Labiba Anam, Khaled Almoayed, Ahmed Al-Dar, Faten Ezzadeen

Published in: BMC Infectious Diseases | Issue 1/2022

Login to get access

Abstract

Background

Yemen has faced one of the worst humanitarian crises in the world since the start of the war in 2015. In 2020; 30 Vaccine Derived Polio Virus type 1 (VDPV1) isolates were detected in Saadah governorate. The aims are to characterize the outbreak and address the gaps predisposing the emergence and circulation of VDPV1 in Saadah governorate, Yemen.

Method

A retrospective descriptive study of confirmed cases of VDPV1 between January and December 2020 was performed. Surveillance staff collected data from patient cases, contacts, as well as stool specimens that shipped to WHO accredited polio labs. Data of population immunity was also reviewed. The difference in days between the date of sample collection, shipment, and receiving lab result was used to calculate the average of delayed days for lab confirmation.

Results

From January to December 2020, a total of 114 cases of acute flaccid paralysis (AFP) were reported from 87% (13/15) districts, and cVDPV1 was confirmed among 26% (30) AFP cases. 75% (21) were < 5 years, 73% (20) had zero doses of Oral Polio Vaccine (OPV). The first confirmed case (3%) was from Saadah city, with paralysis onset at the end of January 2020 followed by 5 cases (17%) in March from another four districts, 8 cases (27%) in April, and 13 (43%) up to December 2020 were from the same five districts in addition to 3 (10%) form three new districts. The lab confirmation was received after an average of 126 days (71–196) from sample collection. The isolates differ from the Sabin 1 type by 17- 30 VP1 nucleotides (nt) and were linked to VDPV1 with 13 (nt) divergence that isolated in July 2020 from stool specimens collected before one year from contacts of an inadequate AFP case reported from Sahar district.

Conclusion

The new emerging VDPV1 was retrospectively confirmed after one year of sample collection from Sahar district. Delayed lab confirmation, as well as the response and low immunization profile of children against polio, were the main predisposing factors for cVDPV1 outbreak. This outbreak highlights the need to maintain regular biweekly shipments to referral polio labs in the short-term, and the exploration of other options in the longer-term to enable the Yemen National Lab to fully process national samples itself.
Appendix
Available only for authorised users
Literature
1.
go back to reference DuintjerTebbens RJ, Pallansch MA, Chumakov KM, Halsey NA, Hovi T, Minor PD, Modlin JF, Patriarca PA, Sutter RW, Wright PF, et al. Expert review on poliovirus immunity and transmission. Risk Anal. 2013;33(4):544–605.CrossRef DuintjerTebbens RJ, Pallansch MA, Chumakov KM, Halsey NA, Hovi T, Minor PD, Modlin JF, Patriarca PA, Sutter RW, Wright PF, et al. Expert review on poliovirus immunity and transmission. Risk Anal. 2013;33(4):544–605.CrossRef
3.
go back to reference Nafi OA, Ramadan B. Sabin vaccine in poliomyelitis eradication: achievements and risks. J Pure Appl Microbiol. 2019;13(1):413–18. Nafi OA, Ramadan B. Sabin vaccine in poliomyelitis eradication: achievements and risks. J Pure Appl Microbiol. 2019;13(1):413–18.
4.
go back to reference Kew OM, Nottay BK, Hatch MH, Nakano JH, Obijeski JF. Multiple genetic changes can occur in the oral poliovaccines upon replication in humans. J Gen Virol. 1981;56(2):337–47.CrossRef Kew OM, Nottay BK, Hatch MH, Nakano JH, Obijeski JF. Multiple genetic changes can occur in the oral poliovaccines upon replication in humans. J Gen Virol. 1981;56(2):337–47.CrossRef
5.
6.
go back to reference Kew OM, Sutter RW, de Gourville EM, Dowdle WR, Pallansch MA. Vaccine-derived polioviruses and the endgame strategy for global polio eradication. Annu Rev Microbiol. 2005;59:587–635.CrossRef Kew OM, Sutter RW, de Gourville EM, Dowdle WR, Pallansch MA. Vaccine-derived polioviruses and the endgame strategy for global polio eradication. Annu Rev Microbiol. 2005;59:587–635.CrossRef
7.
go back to reference Tebbens RJ, Pallansch MA, Kew OM, Cáceres VM, Jafari H, Cochi SL, Sutter RW, Aylward RB, Thompson KM. Risks of paralytic disease due to wild or vaccine-derived poliovirus after eradication. Risk Anal. 2006;26(6):1471–505.CrossRef Tebbens RJ, Pallansch MA, Kew OM, Cáceres VM, Jafari H, Cochi SL, Sutter RW, Aylward RB, Thompson KM. Risks of paralytic disease due to wild or vaccine-derived poliovirus after eradication. Risk Anal. 2006;26(6):1471–505.CrossRef
8.
go back to reference Kew OM, Wright PF, Agol VI, Delpeyroux F, Shimizu H, Nathanson N, Pallansch MA. Circulating vaccine-derived polioviruses: current state of knowledge. Bull World Health Organ. 2004;82:16–23.PubMedPubMedCentral Kew OM, Wright PF, Agol VI, Delpeyroux F, Shimizu H, Nathanson N, Pallansch MA. Circulating vaccine-derived polioviruses: current state of knowledge. Bull World Health Organ. 2004;82:16–23.PubMedPubMedCentral
9.
go back to reference Kalkowska DA, DuintjerTebbens RJ, Pallansch MA, Cochi SL, Wassilak SGF, Thompson KM. Modeling undetected live poliovirus circulation after apparent interruption of transmission: implications for surveillance and vaccination. BMC Infect Dis. 2015;15(1):66.CrossRef Kalkowska DA, DuintjerTebbens RJ, Pallansch MA, Cochi SL, Wassilak SGF, Thompson KM. Modeling undetected live poliovirus circulation after apparent interruption of transmission: implications for surveillance and vaccination. BMC Infect Dis. 2015;15(1):66.CrossRef
10.
go back to reference DuintjerTebbens RJ, Pallansch MA, Kim JH, Burns CC, Kew OM, Oberste MS, Diop OM, Wassilak SG, Cochi SL, Thompson KM. Oral poliovirus vaccine evolution and insights relevant to modeling the risks of circulating vaccine-derived polioviruses (cVDPVs). Risk Anal. 2013;33(4):680–702.CrossRef DuintjerTebbens RJ, Pallansch MA, Kim JH, Burns CC, Kew OM, Oberste MS, Diop OM, Wassilak SG, Cochi SL, Thompson KM. Oral poliovirus vaccine evolution and insights relevant to modeling the risks of circulating vaccine-derived polioviruses (cVDPVs). Risk Anal. 2013;33(4):680–702.CrossRef
12.
go back to reference Kew O, Morris-Glasgow V, Landaverde M, Burns C, Shaw J, Garib ZA, André J, Blackman E, Freeman CJ, Jorba J. Outbreak of poliomyelitis in Hispaniola associated with circulating type 1 vaccine-derived poliovirus. Science. 2002;296(5566):356–9.CrossRef Kew O, Morris-Glasgow V, Landaverde M, Burns C, Shaw J, Garib ZA, André J, Blackman E, Freeman CJ, Jorba J. Outbreak of poliomyelitis in Hispaniola associated with circulating type 1 vaccine-derived poliovirus. Science. 2002;296(5566):356–9.CrossRef
14.
go back to reference Khetsuriani N, Perehinets I, Nitzan D, Popovic D, Moran T, Allahverdiyeva V, Huseynov S, Gavrilin E, Slobodianyk L, Izhyk O, et al. Responding to a cVDPV1 outbreak in Ukraine: Implications, challenges and opportunities. Vaccine. 2017;35(36):4769–76.CrossRef Khetsuriani N, Perehinets I, Nitzan D, Popovic D, Moran T, Allahverdiyeva V, Huseynov S, Gavrilin E, Slobodianyk L, Izhyk O, et al. Responding to a cVDPV1 outbreak in Ukraine: Implications, challenges and opportunities. Vaccine. 2017;35(36):4769–76.CrossRef
16.
go back to reference Bauri M, Wilkinson AL, Ropa B, Feldon K, Snider CJ, Anand A, Tallis G, Boualam L, Grabovac V, Avagyan T, et al. Notes from the field: circulating vaccine-derived poliovirus type 1 and outbreak response—Papua New Guinea, 2018. MMWR Morb Mortal Wkly Rep. 2019;68(5):119–20.CrossRef Bauri M, Wilkinson AL, Ropa B, Feldon K, Snider CJ, Anand A, Tallis G, Boualam L, Grabovac V, Avagyan T, et al. Notes from the field: circulating vaccine-derived poliovirus type 1 and outbreak response—Papua New Guinea, 2018. MMWR Morb Mortal Wkly Rep. 2019;68(5):119–20.CrossRef
19.
go back to reference Ming LC, Hussain Z, Yeoh SF, Koh D, Lee KS. Circulating vaccine-derived poliovirus: a menace to the end game of polio eradication. Glob Health. 2020;16(1):63.CrossRef Ming LC, Hussain Z, Yeoh SF, Koh D, Lee KS. Circulating vaccine-derived poliovirus: a menace to the end game of polio eradication. Glob Health. 2020;16(1):63.CrossRef
20.
go back to reference Jaawal A. An outbreak of circulating vaccine derived poliovirus in Yemen, 2011–2012. Int J Infect Dis. 2014;21:457.CrossRef Jaawal A. An outbreak of circulating vaccine derived poliovirus in Yemen, 2011–2012. Int J Infect Dis. 2014;21:457.CrossRef
21.
go back to reference Jorba J, Diop OM, Iber J, Henderson E, Sutter RW, Wassilak SG, Burns CC. Update on vaccine-derived polioviruses—worldwide, January 2016–June 2017. MMWR Morb Mortal Wkly Rep. 2017;66(43):1185.CrossRef Jorba J, Diop OM, Iber J, Henderson E, Sutter RW, Wassilak SG, Burns CC. Update on vaccine-derived polioviruses—worldwide, January 2016–June 2017. MMWR Morb Mortal Wkly Rep. 2017;66(43):1185.CrossRef
22.
go back to reference Almoayed KA, Break AB, Al-Qassimi M, Assabri A, Khader Y. The acute flaccid paralysis (AFP) surveillance system in Yemen, 2010–2015: descriptive study based on secondary data analysis. JMIR Public Health Surveill. 2019;5(4): e14413.CrossRef Almoayed KA, Break AB, Al-Qassimi M, Assabri A, Khader Y. The acute flaccid paralysis (AFP) surveillance system in Yemen, 2010–2015: descriptive study based on secondary data analysis. JMIR Public Health Surveill. 2019;5(4): e14413.CrossRef
24.
go back to reference Standard operating procedures; Responding to a poliovirus event or outbreak version 3. Geneva: World Health Organization; 2018. Licence: CC BY-NC-SA 3.0 IGO. Standard operating procedures; Responding to a poliovirus event or outbreak version 3. Geneva: World Health Organization; 2018. Licence: CC BY-NC-SA 3.0 IGO.
25.
go back to reference Torbosh A, Al Amad MA, Al Serouri A, Khader Y. The impact of war in Yemen on immunization coverage of children under one year of age: descriptive study. JMIR Public Health Surveill. 2019;5(4): e14461.CrossRef Torbosh A, Al Amad MA, Al Serouri A, Khader Y. The impact of war in Yemen on immunization coverage of children under one year of age: descriptive study. JMIR Public Health Surveill. 2019;5(4): e14461.CrossRef
28.
go back to reference Ministry of Health: Yemen Weekly AFP Surveillance Updated to week 43. MOH; 2020. Ministry of Health: Yemen Weekly AFP Surveillance Updated to week 43. MOH; 2020.
30.
go back to reference Diop OM, Kew OM, de Gourville EM, Pallansch MA. The global polio laboratory network as a platform for the viral vaccine-preventable and emerging diseases laboratory networks. J Infect Dis. 2017;216(suppl 1):S299-s307.CrossRef Diop OM, Kew OM, de Gourville EM, Pallansch MA. The global polio laboratory network as a platform for the viral vaccine-preventable and emerging diseases laboratory networks. J Infect Dis. 2017;216(suppl 1):S299-s307.CrossRef
31.
go back to reference World Health Organization. Surveillance standards for vaccine-preventable diseases. 2nd ed. Geneva: World Health Organization; 2018. World Health Organization. Surveillance standards for vaccine-preventable diseases. 2nd ed. Geneva: World Health Organization; 2018.
35.
go back to reference Liang X, Zhang Y, Xu W, Wen N, Zuo S, Lee L, Yu J. An outbreak of poliomyelitis caused by type 1 vaccine-derived poliovirus in China. J Infect Dis. 2006;194:545–51.CrossRef Liang X, Zhang Y, Xu W, Wen N, Zuo S, Lee L, Yu J. An outbreak of poliomyelitis caused by type 1 vaccine-derived poliovirus in China. J Infect Dis. 2006;194:545–51.CrossRef
36.
go back to reference Kew OM, Sutter RW, Gourville EMD, Dowdle WR, Pallansch MA. Vaccine-derived polioviruses and the endgame strategy for global polio eradication. Ann Rev Microbiol. 2005;59(1):587–635.CrossRef Kew OM, Sutter RW, Gourville EMD, Dowdle WR, Pallansch MA. Vaccine-derived polioviruses and the endgame strategy for global polio eradication. Ann Rev Microbiol. 2005;59(1):587–635.CrossRef
37.
go back to reference Al-Dubaiee R, Al Qassimi M, Al-Dar A, Al Serouri A, Khader Y. Impact of the protracted war in yemen on the acute flaccid paralysis surveillance system: retrospective descriptive analysis. JMIR Public Health Surveill. 2021;7(5): e27638.CrossRef Al-Dubaiee R, Al Qassimi M, Al-Dar A, Al Serouri A, Khader Y. Impact of the protracted war in yemen on the acute flaccid paralysis surveillance system: retrospective descriptive analysis. JMIR Public Health Surveill. 2021;7(5): e27638.CrossRef
38.
go back to reference Sharif S, Abbasi BH, Khurshid A, Alam MM, Shaukat S, Angez M, Rana MS, Zaidi SS. Evolution and circulation of type-2 vaccine-derived polioviruses in Nad Ali district of Southern Afghanistan during June 2009-February 2011. PLoS ONE. 2014;9(2): e88442.CrossRef Sharif S, Abbasi BH, Khurshid A, Alam MM, Shaukat S, Angez M, Rana MS, Zaidi SS. Evolution and circulation of type-2 vaccine-derived polioviruses in Nad Ali district of Southern Afghanistan during June 2009-February 2011. PLoS ONE. 2014;9(2): e88442.CrossRef
39.
go back to reference Yan D, Li L, Zhu S, Zhang Y, An J, Wang D, Wen N, Jorba J, Liu W, Zhong G, et al. Emergence and localized circulation of a vaccine-derived poliovirus in an isolated mountain community in Guangxi, China. J Clin Microbiol. 2010;48(9):3274–80.CrossRef Yan D, Li L, Zhu S, Zhang Y, An J, Wang D, Wen N, Jorba J, Liu W, Zhong G, et al. Emergence and localized circulation of a vaccine-derived poliovirus in an isolated mountain community in Guangxi, China. J Clin Microbiol. 2010;48(9):3274–80.CrossRef
40.
go back to reference Alleman MM, Chitale R, Burns CC, Iber J, Andriamihantanirina R. Vaccine-derived poliovirus outbreaks and events–three provinces, Democratic Republic of the Congo, 2017. MMWR Morb Mortal Wkly Rep. 2018;67(10):300–5.CrossRef Alleman MM, Chitale R, Burns CC, Iber J, Andriamihantanirina R. Vaccine-derived poliovirus outbreaks and events–three provinces, Democratic Republic of the Congo, 2017. MMWR Morb Mortal Wkly Rep. 2018;67(10):300–5.CrossRef
41.
go back to reference Wang HB, Fang G, Yu WZ, Du F, Fan CX, Liu QL, Hao LX, Liu Y, Zheng JS, Qin ZY, et al. An outbreak of type π vaccine-derived poliovirus in Sichuan province, China: emergence and circulation in an under-immunized population. PLoS ONE. 2014;9(12): e113880.CrossRef Wang HB, Fang G, Yu WZ, Du F, Fan CX, Liu QL, Hao LX, Liu Y, Zheng JS, Qin ZY, et al. An outbreak of type π vaccine-derived poliovirus in Sichuan province, China: emergence and circulation in an under-immunized population. PLoS ONE. 2014;9(12): e113880.CrossRef
42.
go back to reference Harrington C, Sun H, Jeffries-Miles S, Gerloff N. Culture-independent detection of poliovirus in stool samples by direct RNA extraction. Microbiol Spectr. 2021;9(3): e0066821.CrossRef Harrington C, Sun H, Jeffries-Miles S, Gerloff N. Culture-independent detection of poliovirus in stool samples by direct RNA extraction. Microbiol Spectr. 2021;9(3): e0066821.CrossRef
Metadata
Title
Circulating vaccine derived polio virus type 1 outbreak, Saadah governorate, Yemen, 2020
Authors
Mutahar Ahmed Al-Qassimi
Mohammed Al Amad
Labiba Anam
Khaled Almoayed
Ahmed Al-Dar
Faten Ezzadeen
Publication date
01-12-2022
Publisher
BioMed Central
Keyword
Polio Virus
Published in
BMC Infectious Diseases / Issue 1/2022
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-022-07397-0

Other articles of this Issue 1/2022

BMC Infectious Diseases 1/2022 Go to the issue