Skip to main content
Top
Published in: BMC Infectious Diseases 1/2022

Open Access 01-12-2022 | Linezolid | Case report

The challenge of antibiotic selection in prosthetic joint infections due to Corynebacterium striatum: a case report

Authors: Amber C. Streifel, Cara D. Varley, YoungYoon Ham, Monica K. Sikka, James S. Lewis II

Published in: BMC Infectious Diseases | Issue 1/2022

Login to get access

Abstract

Background

Corynebacterium striatum is a gram-positive facultative anaerobe found in the environment and human flora that has historically been considered a contaminant. More recently, Corynebacterium striatum has been implicated in human infections, including respiratory infections, endocarditis, and bone and joint infections, particularly those involving hardware or implanted devices.

Case presentation

A 65-year-old man presented for washout of his left total knee arthroplasty following a revision 20 days prior. The patient underwent debridement of his left total knee and revision of the left total femur arthroplasty. Daptomycin was initiated empirically due to a previous rash from vancomycin. Operative tissue cultures grew Staphylococcus haemolyticus, Staphylococcus epidermidis and Corynebacterium striatum. Given concern for daptomycin resistance and the reliability of vancomycin susceptibility, daptomycin was discontinued and vancomycin initiated following a graded challenge. Within a few days, the patient developed a diffuse, blanching, erythematous, maculopapular rash and daptomycin was restarted. Over the next 72 h, his rash progressed and he met criteria for drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome. Daptomycin was stopped and oral linezolid initiated; rash improved. C. striatum returned with susceptibility to gentamicin, linezolid, vancomycin and daptomycin. Due to concern for adverse effects on long-term linezolid, daptomycin was restarted and was tolerated for 20 days, at which point purulent drainage from incision increased. The patient underwent another arthroplasty revision and washout. Operative cultures from this surgery were again positive for C. striatum. Repeat C. striatum susceptibilities revealed resistance to daptomycin but retained susceptibility to linezolid. Daptomycin was again changed to linezolid. He completed six weeks of linezolid followed by linezolid 600 mg daily for suppression and ultimately opted for disarticulation.

Conclusions

C. striatum has historically been regarded as a contaminant, particularly when grown in tissue culture in the setting of prosthetic joint infection. Based on the available literature and susceptibility patterns, the most appropriate first-line therapy is vancomycin or linezolid. Treatment with daptomycin should be avoided, even when isolates appear susceptible, due to the risk of development of high-level resistance (MIC > 256 µg/mL) and clinical failure.
Literature
1.
go back to reference Lee PP, Ferguson DA, Sarubbi FA. Corynebacterium striatum: an underappreciated community and nosocomial pathogen. J Infect. 2005;50:338–43.CrossRef Lee PP, Ferguson DA, Sarubbi FA. Corynebacterium striatum: an underappreciated community and nosocomial pathogen. J Infect. 2005;50:338–43.CrossRef
2.
go back to reference Ramos JN, Souza C, Faria YV, da Silva EC, Veras JFC, Baio PVP, Seabra SH, Moreira LO, Junior RH, Mattos-Guaraldi AL, Viera VV. Bloodstream and catheter-related infections due to different clones of multidrug-resistant and biofilm producer Corynebacterium striatum. BMC Infect Dis. 2019;19(672):1–11. Ramos JN, Souza C, Faria YV, da Silva EC, Veras JFC, Baio PVP, Seabra SH, Moreira LO, Junior RH, Mattos-Guaraldi AL, Viera VV. Bloodstream and catheter-related infections due to different clones of multidrug-resistant and biofilm producer Corynebacterium striatum. BMC Infect Dis. 2019;19(672):1–11.
3.
go back to reference de Souza C, Faria YV, SantAnna LO, Viana VG, Seabra SH, De Souza MC, Vieira VV, Junior RH, Moreira LDO, de Mattos-Guaraldi AL. Biofilm production by multiresistant Corynebacterium striatum associated with nosocomial outbreaks. Mem Inst Oswaldo Cruz. 2015;110(2):242–8.CrossRef de Souza C, Faria YV, SantAnna LO, Viana VG, Seabra SH, De Souza MC, Vieira VV, Junior RH, Moreira LDO, de Mattos-Guaraldi AL. Biofilm production by multiresistant Corynebacterium striatum associated with nosocomial outbreaks. Mem Inst Oswaldo Cruz. 2015;110(2):242–8.CrossRef
4.
go back to reference Suwantarat N, Weik C, Romagnoli M, Ellis BC, Kwiatkowski N, Carroll KC. Practical utility and accuracy of matrix-assisted laser desporption ionization-time of flight mass spectrometry for identification of Corynebacterium species and other medically relevant coryneform-like bacteria. Am J Clin Pathol. 2016;145:22–8.CrossRef Suwantarat N, Weik C, Romagnoli M, Ellis BC, Kwiatkowski N, Carroll KC. Practical utility and accuracy of matrix-assisted laser desporption ionization-time of flight mass spectrometry for identification of Corynebacterium species and other medically relevant coryneform-like bacteria. Am J Clin Pathol. 2016;145:22–8.CrossRef
5.
go back to reference Esteban J, Nieto E, Calvo R, Fernandez-Roblas R, Valero-Guillen PL, Soriano F. Microbiological characterization and clinical significance of Corynebacterium amycolatum strains. Eur J Clin Microbiol Infect Dis. 1999;18:518–21.CrossRef Esteban J, Nieto E, Calvo R, Fernandez-Roblas R, Valero-Guillen PL, Soriano F. Microbiological characterization and clinical significance of Corynebacterium amycolatum strains. Eur J Clin Microbiol Infect Dis. 1999;18:518–21.CrossRef
6.
go back to reference Voisin S, Deruaz D, Freney J, Renaud FNR. Differentiation of Corynebacterium amycolatum, C. minutissimum, C striatum and related species by pyrolysis-gas-liquid chromatography with atomic emission detection. Res Microbiol. 2002;153:307–11.CrossRef Voisin S, Deruaz D, Freney J, Renaud FNR. Differentiation of Corynebacterium amycolatum, C. minutissimum, C striatum and related species by pyrolysis-gas-liquid chromatography with atomic emission detection. Res Microbiol. 2002;153:307–11.CrossRef
7.
go back to reference McMullen AR, Anderson N, Wallace MA, Shupe A, Burnham CD. When good bugs go bad: epidemiology and antimicrobial resistance profiles of Corynebacterium striatum, an emerging multidrug-resistant, opportunistic pathogen. Antimicrob Agents Chemother. 2017;61(11):e01111-e1117.CrossRef McMullen AR, Anderson N, Wallace MA, Shupe A, Burnham CD. When good bugs go bad: epidemiology and antimicrobial resistance profiles of Corynebacterium striatum, an emerging multidrug-resistant, opportunistic pathogen. Antimicrob Agents Chemother. 2017;61(11):e01111-e1117.CrossRef
8.
go back to reference Kalt F, Schulthess B, Sidler F, Herren S, Fucentese SF, Zingg PO, Berli M, Zinkernagel AS, Zbinden R, Achermann Y. Corynebacterium species rarely cause orthopedic infections. J Clin Microbiol. 2018;56(12):e01200-e1218.CrossRef Kalt F, Schulthess B, Sidler F, Herren S, Fucentese SF, Zingg PO, Berli M, Zinkernagel AS, Zbinden R, Achermann Y. Corynebacterium species rarely cause orthopedic infections. J Clin Microbiol. 2018;56(12):e01200-e1218.CrossRef
9.
go back to reference Osmon DR, Berbari EF, Berendt AR, Lew D, Zimmerli W, Steckleberg JM, Rao N, Hanssen A, Wilson WR. Diagnosis and management of prosthetic joint infection: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis. 2013;56(1):e1-25.CrossRef Osmon DR, Berbari EF, Berendt AR, Lew D, Zimmerli W, Steckleberg JM, Rao N, Hanssen A, Wilson WR. Diagnosis and management of prosthetic joint infection: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis. 2013;56(1):e1-25.CrossRef
10.
go back to reference Hahn WO, Werth BJ, Butler-Wu SM, Rakita RM. Multidrug-resistant Corynebacterium striatum associated with increased use of parenteral antimicrobial drugs. Emerg Infect Dis. 2016;22(11):1980–2014.CrossRef Hahn WO, Werth BJ, Butler-Wu SM, Rakita RM. Multidrug-resistant Corynebacterium striatum associated with increased use of parenteral antimicrobial drugs. Emerg Infect Dis. 2016;22(11):1980–2014.CrossRef
11.
go back to reference CLSI. Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria. 3rd edn, CLSI guideline M45. Wayne, PA: Clinical and Laboratory Standards Institute; 2016 CLSI. Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria. 3rd edn, CLSI guideline M45. Wayne, PA: Clinical and Laboratory Standards Institute; 2016
12.
go back to reference Humphries RM, Pollett S, Sakoulas G. A current perspective on daptomycin for the clinical microbiologist. Clin Microbiol Rev. 2013;26(4):759–80.CrossRef Humphries RM, Pollett S, Sakoulas G. A current perspective on daptomycin for the clinical microbiologist. Clin Microbiol Rev. 2013;26(4):759–80.CrossRef
13.
go back to reference Johnson AP, Mushtaq S, Warner M, Livermore DM. Calcium-supplemented daptomycin Etest strips for susceptibility testing on Oso-Sensitest agar. J Antimicrob Chemother. 2004;53(5):860–2.CrossRef Johnson AP, Mushtaq S, Warner M, Livermore DM. Calcium-supplemented daptomycin Etest strips for susceptibility testing on Oso-Sensitest agar. J Antimicrob Chemother. 2004;53(5):860–2.CrossRef
14.
go back to reference Noussair L, Salomon E, El Sayed F, Duran C, Bouchand F, Roux AL, Gaillard JL, Bauer T, Rottman M, Dinh A. Monomicrobial bone and joint infection due to Corynebacterium striatum: literature review and amoxicillin-rifampin combination as treatment perspective. Eur J Clin Microbiol Infect Dis. 2019;38:1269–78.CrossRef Noussair L, Salomon E, El Sayed F, Duran C, Bouchand F, Roux AL, Gaillard JL, Bauer T, Rottman M, Dinh A. Monomicrobial bone and joint infection due to Corynebacterium striatum: literature review and amoxicillin-rifampin combination as treatment perspective. Eur J Clin Microbiol Infect Dis. 2019;38:1269–78.CrossRef
15.
go back to reference Milosavljevic MN, Milosavljevic JZ, Kocovic AG, et al. Antimicrobial treatment of Corynebacterium striatum invasive infections: a systematic review. Rev Inst Med Trop Sao Paulo. 2021;63: e49.CrossRef Milosavljevic MN, Milosavljevic JZ, Kocovic AG, et al. Antimicrobial treatment of Corynebacterium striatum invasive infections: a systematic review. Rev Inst Med Trop Sao Paulo. 2021;63: e49.CrossRef
16.
go back to reference Tran TT, Jaijakul S, Lewis CT, Diaz L, Panesso D, Kaplan HB, Murray BE, Wagner A, Arias CA. Native valve endocarditis caused by Corynebacterium striatum with heterogeneous high-level daptomycin resistance: collateral damage from daptomycin therapy? Antimicrob Agents Chemother. 2012;56(6):3461–4.CrossRef Tran TT, Jaijakul S, Lewis CT, Diaz L, Panesso D, Kaplan HB, Murray BE, Wagner A, Arias CA. Native valve endocarditis caused by Corynebacterium striatum with heterogeneous high-level daptomycin resistance: collateral damage from daptomycin therapy? Antimicrob Agents Chemother. 2012;56(6):3461–4.CrossRef
17.
go back to reference TeKippe EM, Thomas BS, Ewald GA, Lawrence SJ, Burnham CD. Rapid emergence of daptomycin resistance in clinical isolates of Corynebacterium striatum… a cautionary tale. Eur J Clin Microbiol Infect Dis. 2014;33(12):2199–205.CrossRef TeKippe EM, Thomas BS, Ewald GA, Lawrence SJ, Burnham CD. Rapid emergence of daptomycin resistance in clinical isolates of Corynebacterium striatum… a cautionary tale. Eur J Clin Microbiol Infect Dis. 2014;33(12):2199–205.CrossRef
18.
go back to reference Werth BJ, Hahn WO, Butler-Wu SM, Rakita RM. Emergence of high-level daptomycin resistance in Corynebacterium striatum in two patients with left ventricular assist device infections. Microb Drug Resist. 2016;22(3):233–7.CrossRef Werth BJ, Hahn WO, Butler-Wu SM, Rakita RM. Emergence of high-level daptomycin resistance in Corynebacterium striatum in two patients with left ventricular assist device infections. Microb Drug Resist. 2016;22(3):233–7.CrossRef
19.
go back to reference IDSA. Liu C, Bayer A, Cosgrove SE, et al. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clinical Infectious Diseases. 2011; 52(3):e18–e55. IDSA. Liu C, Bayer A, Cosgrove SE, et al. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clinical Infectious Diseases. 2011; 52(3):e18–e55.
20.
go back to reference Ajmal S, Saleh OA, Beam E. Development of high-grade daptomycin resistance in a patient being treated for Corynebacterium striatum infection. Antimicrob Agents Chemother. 2017;61(7):e00705-e717.CrossRef Ajmal S, Saleh OA, Beam E. Development of high-grade daptomycin resistance in a patient being treated for Corynebacterium striatum infection. Antimicrob Agents Chemother. 2017;61(7):e00705-e717.CrossRef
21.
go back to reference Fernandez Guerrero ML, Molins A, Rey M, Romero J, Gadea I. Multi-drug resistant Corynebacterium striatum endocarditis successfully treated with daptomycin. Int J Antimicrob Agents. 2012;40:373–4.CrossRef Fernandez Guerrero ML, Molins A, Rey M, Romero J, Gadea I. Multi-drug resistant Corynebacterium striatum endocarditis successfully treated with daptomycin. Int J Antimicrob Agents. 2012;40:373–4.CrossRef
23.
go back to reference Bayer AS, Schneider T, Sahl HG. Mechanisms of daptomycin resistance in Staphylococcus aureus: role of the cell membrane and cell wall. Ann NY Acad Sci. 2013;1277(1):139–58.CrossRef Bayer AS, Schneider T, Sahl HG. Mechanisms of daptomycin resistance in Staphylococcus aureus: role of the cell membrane and cell wall. Ann NY Acad Sci. 2013;1277(1):139–58.CrossRef
24.
go back to reference Goldner NK, Bulow C, Cho K, Wallace M, Hsu FF, Patti GJ, Burnham CA, Schlesinger P, Dantas G. Mechanism of high-level daptomycin resistance in Corynebacterium striatum. mSphere. 2018;3(4):e00371-e418.CrossRef Goldner NK, Bulow C, Cho K, Wallace M, Hsu FF, Patti GJ, Burnham CA, Schlesinger P, Dantas G. Mechanism of high-level daptomycin resistance in Corynebacterium striatum. mSphere. 2018;3(4):e00371-e418.CrossRef
Metadata
Title
The challenge of antibiotic selection in prosthetic joint infections due to Corynebacterium striatum: a case report
Authors
Amber C. Streifel
Cara D. Varley
YoungYoon Ham
Monica K. Sikka
James S. Lewis II
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2022
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-022-07270-0

Other articles of this Issue 1/2022

BMC Infectious Diseases 1/2022 Go to the issue