Skip to main content
Top
Published in: BMC Infectious Diseases 1/2022

Open Access 01-12-2022 | Research

Disinfection efficiency test for contaminated surgical mask by using Ozone generator

Authors: Patcharaporn Tippayawat, Chalermchai Vongnarkpetch, Saitharn Papalee, Sukanya Srijampa, Thidarut Boonmars, Nonglak Meethong, Supranee Phanthanawiboon

Published in: BMC Infectious Diseases | Issue 1/2022

Login to get access

Abstract

Background

Ozone (O3) is an effective disinfectant agent that leaves no harmful residues. Due to the global health crisis caused by the COVID-19 pandemic, surgical masks are in high demand, with some needing to be reused in certain regions. This study aims to evaluate the effects of O3 for pathogen disinfection on reused surgical masks in various conditions.

Methods

O3 generators, a modified PZ 2–4 for Air (2000 mg O3/L) and a modified PZ 7 –2HO for Air (500 mg O3/L), were used together with 1.063 m3 (0.68 × 0.68 × 2.3 m) and 0.456 m3 (0.68 × 0.68 × 1.15 m) acrylic boxes as well as a room-sized 56 m3 (4 × 4 × 3.5 m) box to provide 3 conditions for the disinfection of masks contaminated with enveloped RNA virus (105 FFU/mL), bacteria (103 CFU/mL) and fungi (102 spores/mL).

Results

The virucidal effects were 82.99% and 81.70% after 15 min of treatment with 2000 mg/L O3 at 1.063 m3 and 500 mg/L O3 at 0.456 m3, respectively. The viral killing effect was increased over time and reached more than 95% after 2 h of incubation in both conditions. By using 2000 mg/L O3 in a 1.063 m3 box, the growth of bacteria and fungi was found to be completely inhibited on surgical masks after 30 min and 2 h of treatment, respectively. Using a lower-dose O3 generator at 500 mg O3/L in 0.456 m3 provided lower efficiency, although the difference was not significant. Using O3 at 2000 mg O3/L or 500 mg O3/L in a 56 m3 room is efficient for the disinfection of all pathogens on the surface of reused surgical masks.

Conclusions

This study provided the conditions for using O3 (500–2000 mg/L) to reduce pathogens and disinfect contaminated surgical masks, which might be applied to reduce the inappropriate usage of reused surgical masks.
Literature
1.
go back to reference Jayaweera M, Perera H, Gunawardana B, Manatunge J. Transmission of COVID-19 virus by droplets and aerosols: a critical review on the unresolved dichotomy. Environ Res. 2020;188:109819.CrossRef Jayaweera M, Perera H, Gunawardana B, Manatunge J. Transmission of COVID-19 virus by droplets and aerosols: a critical review on the unresolved dichotomy. Environ Res. 2020;188:109819.CrossRef
2.
go back to reference Brazova J, Sediva A, Pospisilova D, Vavrova V, Pohunek P, Macek M Jr, Bartunkova J, Lauschmann H. Differential cytokine profile in children with cystic fibrosis. Clin Immunol. 2005;115(2):210–5.CrossRef Brazova J, Sediva A, Pospisilova D, Vavrova V, Pohunek P, Macek M Jr, Bartunkova J, Lauschmann H. Differential cytokine profile in children with cystic fibrosis. Clin Immunol. 2005;115(2):210–5.CrossRef
3.
go back to reference Chuang CH, Wang YH, Chang HJ, Chen HL, Huang YC, Lin TY, Ozer EA, Allen JP, Hauser AR, Chiu CH. Shanghai fever: a distinct Pseudomonas aeruginosa enteric disease. Gut. 2014;63(5):736–43.CrossRef Chuang CH, Wang YH, Chang HJ, Chen HL, Huang YC, Lin TY, Ozer EA, Allen JP, Hauser AR, Chiu CH. Shanghai fever: a distinct Pseudomonas aeruginosa enteric disease. Gut. 2014;63(5):736–43.CrossRef
4.
go back to reference Lee J, Bong C, Lim W, Bae PK, Abafogi AT, Baek SH, Shin YB, Bak MS, Park S. Fast and easy disinfection of coronavirus-contaminated face masks using ozone gas produced by a dielectric barrier discharge plasma generator. Environ Sci Tech Lett. 2021;8(4):339–44.CrossRef Lee J, Bong C, Lim W, Bae PK, Abafogi AT, Baek SH, Shin YB, Bak MS, Park S. Fast and easy disinfection of coronavirus-contaminated face masks using ozone gas produced by a dielectric barrier discharge plasma generator. Environ Sci Tech Lett. 2021;8(4):339–44.CrossRef
5.
go back to reference Chopra V, Jain H, Goel AD, Chopra S, Chahal AS, Garg N, Mittal V. Correlation of aspergillus skin hypersensitivity with the duration and severity of asthma. Monaldi Arch Chest Dis. 2017;87(3):826.CrossRef Chopra V, Jain H, Goel AD, Chopra S, Chahal AS, Garg N, Mittal V. Correlation of aspergillus skin hypersensitivity with the duration and severity of asthma. Monaldi Arch Chest Dis. 2017;87(3):826.CrossRef
6.
go back to reference Rubio-Romero JC, Pardo-Ferreira MDC, Torrecilla-Garcia JA, Calero-Castro S. Disposable masks: Disinfection and sterilization for reuse, and non-certified manufacturing, in the face of shortages during the COVID-19 pandemic. Saf Sci. 2020;129:104830.CrossRef Rubio-Romero JC, Pardo-Ferreira MDC, Torrecilla-Garcia JA, Calero-Castro S. Disposable masks: Disinfection and sterilization for reuse, and non-certified manufacturing, in the face of shortages during the COVID-19 pandemic. Saf Sci. 2020;129:104830.CrossRef
7.
go back to reference Zucker I, Lester Y, Alter J, Werbner M, Yecheskel Y, Gal-Tanamy M, Dessau M. Pseudoviruses for the assessment of coronavirus disinfection by ozone. Environ Chem Lett 2021:1–7. Zucker I, Lester Y, Alter J, Werbner M, Yecheskel Y, Gal-Tanamy M, Dessau M. Pseudoviruses for the assessment of coronavirus disinfection by ozone. Environ Chem Lett 2021:1–7.
8.
go back to reference Tseng CC, Li CS. Ozone for inactivation of aerosolized bacteriophages. Aerosol Sci Tech. 2006;40(9):683–9.CrossRef Tseng CC, Li CS. Ozone for inactivation of aerosolized bacteriophages. Aerosol Sci Tech. 2006;40(9):683–9.CrossRef
9.
go back to reference Hitakarun A, Ramphan S, Wikan N, Smith DR. Analysis of the virus propagation profile of 14 dengue virus isolates in Aedes albopictus C6/36 cells. BMC Res Notes. 2020;13(1):481.CrossRef Hitakarun A, Ramphan S, Wikan N, Smith DR. Analysis of the virus propagation profile of 14 dengue virus isolates in Aedes albopictus C6/36 cells. BMC Res Notes. 2020;13(1):481.CrossRef
10.
go back to reference Fujita N, Tamura M, Hotta S. Dengue virus plaque formation on microplate cultures and its application to virus neutralization (38564). Proc Soc Exp Biol Med. 1975;148(2):472–5.CrossRef Fujita N, Tamura M, Hotta S. Dengue virus plaque formation on microplate cultures and its application to virus neutralization (38564). Proc Soc Exp Biol Med. 1975;148(2):472–5.CrossRef
11.
go back to reference Payne AF, Binduga-Gajewska I, Kauffman EB, Kramer LD. Quantitation of flaviviruses by fluorescent focus assay. J Virol Methods. 2006;134(1–2):183–9.CrossRef Payne AF, Binduga-Gajewska I, Kauffman EB, Kramer LD. Quantitation of flaviviruses by fluorescent focus assay. J Virol Methods. 2006;134(1–2):183–9.CrossRef
13.
go back to reference Eissa M, Naby M, Beshir M. Bacterial vs fungal spore resistance to peroxygen biocide on inanimate surfaces. Bull Faculty Pharmacy, Cairo University. 2014;52:219.CrossRef Eissa M, Naby M, Beshir M. Bacterial vs fungal spore resistance to peroxygen biocide on inanimate surfaces. Bull Faculty Pharmacy, Cairo University. 2014;52:219.CrossRef
15.
go back to reference Tseng C, Li C. Inactivation of surface viruses by gaseous ozone. J Environ Health. 2008;70(10):56–62.PubMed Tseng C, Li C. Inactivation of surface viruses by gaseous ozone. J Environ Health. 2008;70(10):56–62.PubMed
16.
go back to reference Rojas-Valencia MN. Research on ozone application as disinfectant and action mechanisms on wastewater microorganisms. In: 2012; 2012. Rojas-Valencia MN. Research on ozone application as disinfectant and action mechanisms on wastewater microorganisms. In: 2012; 2012.
18.
go back to reference Sharma M, Hudson JB. Ozone gas is an effective and practical antibacterial agent. Am J Infect Control. 2008;36(8):559–63.CrossRef Sharma M, Hudson JB. Ozone gas is an effective and practical antibacterial agent. Am J Infect Control. 2008;36(8):559–63.CrossRef
19.
go back to reference Akbas MY, Ozdemir M. Effect of gaseous ozone on microbial inactivation and sensory of flaked red peppers. Int J Food Sci Technol. 2008;43(9):1657–62.CrossRef Akbas MY, Ozdemir M. Effect of gaseous ozone on microbial inactivation and sensory of flaked red peppers. Int J Food Sci Technol. 2008;43(9):1657–62.CrossRef
20.
go back to reference Wood JP, Wendling M, Richter W, Rogers J. The use of ozone gas for the inactivation of Bacillus anthracis and Bacillus subtilis spores on building materials. PLoS ONE. 2020;15(5):e0233291.CrossRef Wood JP, Wendling M, Richter W, Rogers J. The use of ozone gas for the inactivation of Bacillus anthracis and Bacillus subtilis spores on building materials. PLoS ONE. 2020;15(5):e0233291.CrossRef
21.
go back to reference Wagner JR, Madugundu GS, Cadet J. Ozone-induced DNA damage: a Pandora’s box of oxidatively modified DNA bases. Chem Res Toxicol. 2021;34(1):80–90.CrossRef Wagner JR, Madugundu GS, Cadet J. Ozone-induced DNA damage: a Pandora’s box of oxidatively modified DNA bases. Chem Res Toxicol. 2021;34(1):80–90.CrossRef
22.
go back to reference Cataldo F. DNA degradation with ozone. Int J Biol Macromol. 2006;38(3–5):248–54.CrossRef Cataldo F. DNA degradation with ozone. Int J Biol Macromol. 2006;38(3–5):248–54.CrossRef
23.
go back to reference King ME. Toxicity of ozone. V. Factors affecting acute toxicity. Ind Med Surg. 1963;32:93–4.PubMed King ME. Toxicity of ozone. V. Factors affecting acute toxicity. Ind Med Surg. 1963;32:93–4.PubMed
24.
go back to reference Moore J, Maier D, Ileleji K. Half-life time of ozone as a function of air movement and conditions in a sealed container. J Stored Prod Res. 2013;55:41–7.CrossRef Moore J, Maier D, Ileleji K. Half-life time of ozone as a function of air movement and conditions in a sealed container. J Stored Prod Res. 2013;55:41–7.CrossRef
25.
go back to reference Dennis R, Pourdeyhimi B, Cashion A, Emanuel S, Hubbard D. Durability of disposable N95 mask material when exposed to improvised ozone gas disinfection. J Sci Med. 2020; 2. Dennis R, Pourdeyhimi B, Cashion A, Emanuel S, Hubbard D. Durability of disposable N95 mask material when exposed to improvised ozone gas disinfection. J Sci Med. 2020; 2.
Metadata
Title
Disinfection efficiency test for contaminated surgical mask by using Ozone generator
Authors
Patcharaporn Tippayawat
Chalermchai Vongnarkpetch
Saitharn Papalee
Sukanya Srijampa
Thidarut Boonmars
Nonglak Meethong
Supranee Phanthanawiboon
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2022
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-022-07227-3

Other articles of this Issue 1/2022

BMC Infectious Diseases 1/2022 Go to the issue