Skip to main content
Top
Published in: BMC Infectious Diseases 1/2022

Open Access 01-12-2022 | Antibiotic | Research article

Detection of Clostridioides difficile toxin B gene: benefits of identifying gastrointestinal pathogens by mPCR assay in the diagnosis of diarrhea in pediatric patients

Authors: Jung-Hyun Byun, Dongeun Yong, Heejung Kim

Published in: BMC Infectious Diseases | Issue 1/2022

Login to get access

Abstract

Background

In the pediatric population, severe Clostridioides difficile infection (CDI) sometimes occurs, but most cases are asymptomatic. The asymptomatic carriage rate in pediatric populations is reportedly higher than in the adult population. It is difficult to diagnose CDI, even if C. difficile is detected in children with diarrhea. This study aimed to evaluate the positivity rate of toxigenic C. difficile in the pediatric population with diarrhea.

Methods

We collected and retrospectively analyzed gastrointestinal pathogen multiplex PCR results of 960 patients to estimate the positivity rate of toxigenic C. difficile in pediatric populations aged between 0 and 18 years.

Results

The overall rate of C. difficile toxin B positivity was 10.1% in the stool samples. The positivity rate peaked in 1-year-old infants (29/153, 19.0%) and continually decreased thereafter. The positivity rate we observed was lower than the rates described in the literature. Remarkably, no C. difficile was detected in neonates. Antibiotic usage was inversely related to the positivity rate, especially in infants < 2 years of age. The odds ratio of antibiotics was 0.44 (95% confidence interval (CI) 0.28–0.68; P < 0.001). The presence of concomitant gastrointestinal pathogens was not associated with toxigenic C. difficile positivity.

Conclusions

Even though toxigenic C. difficile infection is neither an important nor a common cause of pediatric diarrhea, children can spread it to adults at risk of developing CDI. The pediatric population can act as hidden reservoirs for pathogenic strains in the community.
Literature
1.
go back to reference Schutze GE, Willoughby RE. Clostridium difficile infection in infants and children. Pediatrics. 2013;131(1):196–200.CrossRef Schutze GE, Willoughby RE. Clostridium difficile infection in infants and children. Pediatrics. 2013;131(1):196–200.CrossRef
2.
go back to reference Lessa FC, Mu Y, Bamberg WM, Beldavs ZG, Dumyati GK, Dunn JR, et al. Burden of Clostridium difficile infection in the United States. N Engl J Med. 2015;372(9):825–34.CrossRef Lessa FC, Mu Y, Bamberg WM, Beldavs ZG, Dumyati GK, Dunn JR, et al. Burden of Clostridium difficile infection in the United States. N Engl J Med. 2015;372(9):825–34.CrossRef
3.
go back to reference Spigaglia P, Mastrantonio P. Molecular analysis of the pathogenicity locus and polymorphism in the putative negative regulator of toxin production (TcdC) among Clostridium difficile clinical isolates. J Clin Microbiol. 2002;40(9):3470–5.CrossRef Spigaglia P, Mastrantonio P. Molecular analysis of the pathogenicity locus and polymorphism in the putative negative regulator of toxin production (TcdC) among Clostridium difficile clinical isolates. J Clin Microbiol. 2002;40(9):3470–5.CrossRef
4.
go back to reference Chitnis AS, Holzbauer SM, Belflower RM, Winston LG, Bamberg WM, Lyons C, et al. Epidemiology of community-associated Clostridium difficile infection, 2009 through 2011. JAMA Intern Med. 2013;173(14):1359–67.CrossRef Chitnis AS, Holzbauer SM, Belflower RM, Winston LG, Bamberg WM, Lyons C, et al. Epidemiology of community-associated Clostridium difficile infection, 2009 through 2011. JAMA Intern Med. 2013;173(14):1359–67.CrossRef
5.
go back to reference Miyajima F, Roberts P, Swale A, Price V, Jones M, Horan M, et al. Characterisation and carriage ratio of Clostridium difficile strains isolated from a community-dwelling elderly population in the United Kingdom. PLoS One. 2011;6(8):e22804.CrossRef Miyajima F, Roberts P, Swale A, Price V, Jones M, Horan M, et al. Characterisation and carriage ratio of Clostridium difficile strains isolated from a community-dwelling elderly population in the United Kingdom. PLoS One. 2011;6(8):e22804.CrossRef
6.
go back to reference Jangi S, Lamont JT. Asymptomatic colonization by Clostridium difficile in infants: implications for disease in later life. J Pediatr Gastroenterol Nutr. 2010;51(1):2–7.CrossRef Jangi S, Lamont JT. Asymptomatic colonization by Clostridium difficile in infants: implications for disease in later life. J Pediatr Gastroenterol Nutr. 2010;51(1):2–7.CrossRef
7.
go back to reference Lees E, Miyajima F, Pirmohamed M, Carrol E. The role of Clostridium difficile in the paediatric and neonatal gut—a narrative review. Eur J Clin Microbiol Infect Dis. 2016;35(7):1047–57.CrossRef Lees E, Miyajima F, Pirmohamed M, Carrol E. The role of Clostridium difficile in the paediatric and neonatal gut—a narrative review. Eur J Clin Microbiol Infect Dis. 2016;35(7):1047–57.CrossRef
8.
go back to reference McDonald LC, Gerding DN, Johnson S, Bakken JS, Carroll KC, Coffin SE, et al. Clinical Practice Guidelines for Clostridium difficile Infection in Adults and Children: 2017 Update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis. 2018;66(7):e1–48.CrossRef McDonald LC, Gerding DN, Johnson S, Bakken JS, Carroll KC, Coffin SE, et al. Clinical Practice Guidelines for Clostridium difficile Infection in Adults and Children: 2017 Update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis. 2018;66(7):e1–48.CrossRef
9.
go back to reference Sawyer SM, McNeil R, Francis KL, Matskarofski JZ, Patton GC, Bhutta ZA, et al. The age of paediatrics. Lancet Child Adolesc Health. 2019;3(11):822–30.CrossRef Sawyer SM, McNeil R, Francis KL, Matskarofski JZ, Patton GC, Bhutta ZA, et al. The age of paediatrics.  Lancet Child Adolesc Health. 2019;3(11):822–30.CrossRef
10.
go back to reference Al-Jumaili I, Shibley M, Lishman A, Record C. Incidence and origin of Clostridium difficile in neonates. J Clin Microbiol. 1984;19(1):77–8.CrossRef Al-Jumaili I, Shibley M, Lishman A, Record C. Incidence and origin of Clostridium difficile in neonates. J Clin Microbiol. 1984;19(1):77–8.CrossRef
11.
go back to reference Holton A, Hall M, Lowes J. Antibiotic exposure delays intestinal colonization by Clostridium difficile in the newborn. J Antimicrob Chemother. 1989;24(5):811–7.CrossRef Holton A, Hall M, Lowes J. Antibiotic exposure delays intestinal colonization by Clostridium difficile in the newborn. J Antimicrob Chemother. 1989;24(5):811–7.CrossRef
12.
go back to reference Larson H, Barclay F, Honour P, Hill I. Epidemiology of Clostridium difficile in infants. J Infect Dis. 1982;146(6):727–33.CrossRef Larson H, Barclay F, Honour P, Hill I. Epidemiology of Clostridium difficile in infants. J Infect Dis. 1982;146(6):727–33.CrossRef
13.
go back to reference Rousseau C, Poilane I, De Pontual L, Maherault A-C, Le Monnier A, Collignon A. Clostridium difficile carriage in healthy infants in the community: a potential reservoir for pathogenic strains. Clin Infect Dis. 2012;55(9):1209–15.CrossRef Rousseau C, Poilane I, De Pontual L, Maherault A-C, Le Monnier A, Collignon A. Clostridium difficile carriage in healthy infants in the community: a potential reservoir for pathogenic strains. Clin Infect Dis. 2012;55(9):1209–15.CrossRef
14.
go back to reference Davis MY, Zhang H, Brannan LE, Carman RJ, Boone JH. Rapid change of fecal microbiome and disappearance of Clostridium difficile in a colonized infant after transition from breast milk to cow milk. Microbiome. 2016;4:53.CrossRef Davis MY, Zhang H, Brannan LE, Carman RJ, Boone JH. Rapid change of fecal microbiome and disappearance of Clostridium difficile in a colonized infant after transition from breast milk to cow milk. Microbiome. 2016;4:53.CrossRef
15.
go back to reference Donta ST, Myers MG. Clostridium difficile toxin in asymptomatic neonates. J Pediatr. 1982;100(3):431–4.CrossRef Donta ST, Myers MG. Clostridium difficile toxin in asymptomatic neonates. J Pediatr. 1982;100(3):431–4.CrossRef
16.
go back to reference Boenning DA, Fleisher GR, Campos JM, Hulkower CW, Quinlan RW. Clostridium difficile in a pediatric outpatient population. Pediatr Infect Dis. 1982;1(5):336–8.CrossRef Boenning DA, Fleisher GR, Campos JM, Hulkower CW, Quinlan RW. Clostridium difficile in a pediatric outpatient population. Pediatr Infect Dis. 1982;1(5):336–8.CrossRef
17.
go back to reference Holst E, Helin I, Mårdh P-A. Recovery of Clostridium difficile from children. Scand J Infect Dis. 1981;13(1):41–5.CrossRef Holst E, Helin I, Mårdh P-A. Recovery of Clostridium difficile from children. Scand J Infect Dis. 1981;13(1):41–5.CrossRef
18.
go back to reference Kim K, Suh I-S, Kim JM, Kim CW, Cho Y-J. Etiology of childhood diarrhea in Korea. J Clin Microbiol. 1989;27(6):1192–6.CrossRef Kim K, Suh I-S, Kim JM, Kim CW, Cho Y-J. Etiology of childhood diarrhea in Korea. J Clin Microbiol. 1989;27(6):1192–6.CrossRef
19.
go back to reference Valentini D, Vittucci A, Grandin A, Tozzi A, Russo C, Onori M, et al. Coinfection in acute gastroenteritis predicts a more severe clinical course in children. Eur J Clin Microbiol Infect Dis. 2013;32(7):909–15.CrossRef Valentini D, Vittucci A, Grandin A, Tozzi A, Russo C, Onori M, et al. Coinfection in acute gastroenteritis predicts a more severe clinical course in children. Eur J Clin Microbiol Infect Dis. 2013;32(7):909–15.CrossRef
Metadata
Title
Detection of Clostridioides difficile toxin B gene: benefits of identifying gastrointestinal pathogens by mPCR assay in the diagnosis of diarrhea in pediatric patients
Authors
Jung-Hyun Byun
Dongeun Yong
Heejung Kim
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2022
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-022-07104-z

Other articles of this Issue 1/2022

BMC Infectious Diseases 1/2022 Go to the issue