Skip to main content
Top
Published in: BMC Infectious Diseases 1/2022

01-12-2022 | Antibiotic | Research

Blood culture surveillance in a secondary care hospital in Benin: epidemiology of bloodstream infection pathogens and antimicrobial resistance

Authors: Sien Ombelet, Gutemberg Kpossou, Carine Kotchare, Esenam Agbobli, Frédéric Sogbo, Faridath Massou, Katrien Lagrou, Barbara Barbé, Dissou Affolabi, Jan Jacobs

Published in: BMC Infectious Diseases | Issue 1/2022

Login to get access

Abstract

Background

Although global surveillance of antimicrobial resistance (AMR) is considered key in the containment of AMR, data from low- and middle-income countries, especially from sub-Saharan Africa, are scarce. This study describes epidemiology of bloodstream infections and antimicrobial resistance rates in a secondary care hospital in Benin.

Methods

Blood cultures were sampled, according to predefined indications, in BacT/ALERT FA Plus and PF Plus (bioMérieux, Marcy-l’Etoile, France) blood culture bottles (BCB) in a district hospital (Boko hospital) and to a lesser extent in the University hospital of Parakou. These BCB were incubated for 7 days in a standard incubator and twice daily inspected for visual signs of growth. Isolates retrieved from the BCB were processed locally and later shipped to Belgium for reference identification [matrix-assisted laser desorption/ionization time-of-flight spectrometry (MALDI-TOF)] and antibiotic susceptibility testing (disk diffusion and E-tests).

Results

From October 2017 to February 2020, 3353 BCB were sampled, corresponding to 3140 blood cultures (212 cultures consisting of  > 1 BCB) and 3082 suspected bloodstream infection (BSI) episodes. Most of these cultures (n = 2471; 78.7%) were sampled in children < 15 years of age. Pathogens were recovered from 383 (12.4%) cultures, corresponding to 381 confirmed BSI. 340 of these pathogens were available and confirmed by reference identification. The most common pathogens were Klebsiella pneumoniae (n = 53; 15.6%), Salmonella Typhi (n = 52; 15.3%) and Staphylococcus aureus (n = 46; 13.5%). AMR rates were high among Enterobacterales, with resistance to third-generation cephalosporins in 77.6% of K. pneumoniae isolates (n = 58), 12.8% of Escherichia coli isolates (n = 49) and 70.5% of Enterobacter cloacae isolates (n = 44). Carbapenemase production was detected in 2 Escherichia coli and 2 Enterobacter cloacae isolates, all of which were of the New Delhi metallo-beta lactamase type. Methicillin resistance was present in 22.4% of S. aureus isolates (n = 49).

Conclusion

Blood cultures were successfully implemented in a district hospital in Benin, especially among the pediatric patient population. Unexpectedly high rates of AMR among Gram-negative bacteria against commonly used antibiotics were found, demonstrating the clinical and scientific importance of clinical bacteriology laboratories at this level of care.
Appendix
Available only for authorised users
Literature
1.
go back to reference WHO. Global antimicrobial resistance surveillance system (GLASS) report. Geneva: WHO; 2017. WHO. Global antimicrobial resistance surveillance system (GLASS) report. Geneva: WHO; 2017.
3.
go back to reference Yansouni CP, Seifu D, Libman M, Alemayehu T, Gizaw S, Johansen ØH, et al. A feasible laboratory-strengthening intervention yielding a sustainable clinical bacteriology sector to support antimicrobial Stewardship in a large referral hospital in Ethiopia. Front Public Health. 2020;8(June):1–10. Yansouni CP, Seifu D, Libman M, Alemayehu T, Gizaw S, Johansen ØH, et al. A feasible laboratory-strengthening intervention yielding a sustainable clinical bacteriology sector to support antimicrobial Stewardship in a large referral hospital in Ethiopia. Front Public Health. 2020;8(June):1–10.
5.
go back to reference Bebell L, Muiru A. Antibiotic use and emerging resistance—how can resource-limited countries turn the tide? Glob Heart. 2014;9(3):347–58.PubMedCrossRef Bebell L, Muiru A. Antibiotic use and emerging resistance—how can resource-limited countries turn the tide? Glob Heart. 2014;9(3):347–58.PubMedCrossRef
6.
go back to reference Barbé B, Yansouni CP, Affolabi D, Jacobs J. Implementation of quality management for clinical bacteriology in low-resource settings. Clin Microbiol Infect. 2017;23(7):426–33.PubMedCrossRef Barbé B, Yansouni CP, Affolabi D, Jacobs J. Implementation of quality management for clinical bacteriology in low-resource settings. Clin Microbiol Infect. 2017;23(7):426–33.PubMedCrossRef
7.
go back to reference Tadesse BT, Ashley EA, Ongarello S, Havumaki J, Wijegoonewardena M, González IJ, et al. Antimicrobial resistance in Africa: a systematic review. BMC Infect Dis. 2017;17(1):1–17.CrossRef Tadesse BT, Ashley EA, Ongarello S, Havumaki J, Wijegoonewardena M, González IJ, et al. Antimicrobial resistance in Africa: a systematic review. BMC Infect Dis. 2017;17(1):1–17.CrossRef
8.
go back to reference Leopold SJ, van Leth F, Tarekegn H, Schultsz C. Antimicrobial drug resistance among clinically relevant bacterial isolates in sub-Saharan Africa: a systematic review. J Antimicrob Chemother. 2014;69(9):2337–53.PubMedCrossRef Leopold SJ, van Leth F, Tarekegn H, Schultsz C. Antimicrobial drug resistance among clinically relevant bacterial isolates in sub-Saharan Africa: a systematic review. J Antimicrob Chemother. 2014;69(9):2337–53.PubMedCrossRef
9.
go back to reference Petti CA, Polage CR, Quinn TC, Ronald AR, Sande MA. Laboratory medicine in Africa: a barrier to effective health care. Clin Infect Dis. 2006;42(3):377–82.PubMedCrossRef Petti CA, Polage CR, Quinn TC, Ronald AR, Sande MA. Laboratory medicine in Africa: a barrier to effective health care. Clin Infect Dis. 2006;42(3):377–82.PubMedCrossRef
10.
go back to reference Ombelet S, Ronat JB, Walsh T, Yansouni CP, Cox J, Vlieghe E, et al. Clinical bacteriology in low-resource settings: today’s solutions. Lancet Infect Dis. 2018;18(8):e248–58.PubMedCrossRef Ombelet S, Ronat JB, Walsh T, Yansouni CP, Cox J, Vlieghe E, et al. Clinical bacteriology in low-resource settings: today’s solutions. Lancet Infect Dis. 2018;18(8):e248–58.PubMedCrossRef
12.
go back to reference Okeke IN. Laboratory systems as an antibacterial resistance containment tool in Africa. Afr J Lab Med. 2016;5(3):1–8.CrossRef Okeke IN. Laboratory systems as an antibacterial resistance containment tool in Africa. Afr J Lab Med. 2016;5(3):1–8.CrossRef
14.
go back to reference Hall JW, Bouchard J, Bookstaver PB, Haldeman MS, Kishimbo P, Mbwanji G, et al. The Mbeya Antimicrobial Stewardship Team: implementing antimicrobial stewardship at a zonal-level hospital in southern Tanzania. Pharmacy. 2020;8(2):107.PubMedCentralCrossRef Hall JW, Bouchard J, Bookstaver PB, Haldeman MS, Kishimbo P, Mbwanji G, et al. The Mbeya Antimicrobial Stewardship Team: implementing antimicrobial stewardship at a zonal-level hospital in southern Tanzania. Pharmacy. 2020;8(2):107.PubMedCentralCrossRef
17.
go back to reference Leber AL. Clinical microbiology procedures handbook. 4th ed. Washington DC: American Society for Microbiology; 2016.CrossRef Leber AL. Clinical microbiology procedures handbook. 4th ed. Washington DC: American Society for Microbiology; 2016.CrossRef
18.
go back to reference Jorgensen JH. Manual of clinical microbiology. In: Jorgensen JH, Carroll KC, Funke G, Pfaller MA, editors. Manual of clinical microbiology. 11th ed. Washington DC: ASM Press; 2015.CrossRef Jorgensen JH. Manual of clinical microbiology. In: Jorgensen JH, Carroll KC, Funke G, Pfaller MA, editors. Manual of clinical microbiology. 11th ed. Washington DC: ASM Press; 2015.CrossRef
19.
go back to reference CLSI. M100: performance standards for antimicrobial susceptibility testing. In: Weinstein M, Lewis JS, Bobenchik AM, Campeau S, Cullen S, Galas M, et al., editors. 31th ed. Wayne: Clinical and Laboratory Standards Institute; 2021. CLSI. M100: performance standards for antimicrobial susceptibility testing. In: Weinstein M, Lewis JS, Bobenchik AM, Campeau S, Cullen S, Galas M, et al., editors. 31th ed. Wayne: Clinical and Laboratory Standards Institute; 2021.
20.
go back to reference Clinical Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing. CLSI supplement M100. 31th ed. Vol. 31. Annapolis Junction: CLSI; 2021. Clinical Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing. CLSI supplement M100. 31th ed. Vol. 31. Annapolis Junction: CLSI; 2021.
22.
go back to reference Meunier D, Vickers A, Pike R, Hill RL, Woodford N, Hopkins KL. Evaluation of the K-SeT R.E.S.I.S.T. immunochromatographic assay for the rapid detection of KPC and OXA-48-like carbapenemases. J Antimicrob Chemother. 2016;71(8):2357–9. Meunier D, Vickers A, Pike R, Hill RL, Woodford N, Hopkins KL. Evaluation of the K-SeT R.E.S.I.S.T. immunochromatographic assay for the rapid detection of KPC and OXA-48-like carbapenemases. J Antimicrob Chemother. 2016;71(8):2357–9.
23.
go back to reference Glupczynski Y, Jousset A, Evrard S, Bonnin RA, Huang TD, Dortet L, et al. Prospective evaluation of the OKN K-SeT assay, a new multiplex immunochromatographic test for the rapid detection of OXA-48-like, KPC and NDM carbapenemases. J Antimicrob Chemother. 2017;72(7):1955–60.PubMedPubMedCentralCrossRef Glupczynski Y, Jousset A, Evrard S, Bonnin RA, Huang TD, Dortet L, et al. Prospective evaluation of the OKN K-SeT assay, a new multiplex immunochromatographic test for the rapid detection of OXA-48-like, KPC and NDM carbapenemases. J Antimicrob Chemother. 2017;72(7):1955–60.PubMedPubMedCentralCrossRef
24.
go back to reference Wareham DW, Abdul Momin MHF. Rapid detection of carbapenemases in Enterobacteriaceae: evaluation of the resist-2 O.K.N. (OXA-48, KPC, NDM) lateral flow multiplexed assay. J Clin Microbiol. 2017;55(4):1223–5. Wareham DW, Abdul Momin MHF. Rapid detection of carbapenemases in Enterobacteriaceae: evaluation of the resist-2 O.K.N. (OXA-48, KPC, NDM) lateral flow multiplexed assay. J Clin Microbiol. 2017;55(4):1223–5.
27.
go back to reference Tack B, Phoba MF, Van Puyvelde S, Kalonji LM, Hardy L, Barbé B, et al. Salmonella typhi from blood cultures in the democratic Republic of the Congo: a 10-year surveillance. Clin Infect Dis. 2019;68(Suppl 2):S130–7.PubMedPubMedCentralCrossRef Tack B, Phoba MF, Van Puyvelde S, Kalonji LM, Hardy L, Barbé B, et al. Salmonella typhi from blood cultures in the democratic Republic of the Congo: a 10-year surveillance. Clin Infect Dis. 2019;68(Suppl 2):S130–7.PubMedPubMedCentralCrossRef
28.
go back to reference Rodríguez-Baño J, López-Prieto MD, Portillo MM, Retamar P, Natera C, Nuño E, et al. Epidemiology and clinical features of community-acquired, healthcare-associated and nosocomial bloodstream infections in tertiary-care and community hospitals. Clin Microbiol Infect. 2010;16(9):1408–13.PubMedCrossRef Rodríguez-Baño J, López-Prieto MD, Portillo MM, Retamar P, Natera C, Nuño E, et al. Epidemiology and clinical features of community-acquired, healthcare-associated and nosocomial bloodstream infections in tertiary-care and community hospitals. Clin Microbiol Infect. 2010;16(9):1408–13.PubMedCrossRef
29.
go back to reference Baron E, Dunne W, Weinstein M, Weich D, Wilson D, Yagupsky P. Cumitech 1C, blood cultures IV. In: Baron E, editor. Cumitech 1C. Washington, DC: ASM Press; 2005. Baron E, Dunne W, Weinstein M, Weich D, Wilson D, Yagupsky P. Cumitech 1C, blood cultures IV. In: Baron E, editor. Cumitech 1C. Washington, DC: ASM Press; 2005.
30.
go back to reference Tack B, Phoba M-F, Barbé B, Kalonji LM, Hardy L, Van Puyvelde S, et al. Non-typhoidal Salmonella bloodstream infections in Kisantu, DR Congo: emergence of O5-negative Salmonella Typhimurium and extensive drug resistance. PLoS Negl Trop Dis. 2020;14(4):e0008121. Tack B, Phoba M-F, Barbé B, Kalonji LM, Hardy L, Van Puyvelde S, et al. Non-typhoidal Salmonella bloodstream infections in Kisantu, DR Congo: emergence of O5-negative Salmonella Typhimurium and extensive drug resistance. PLoS Negl Trop Dis. 2020;14(4):e0008121.
31.
go back to reference Guiraud I, Post A, Diallo SN, Lompo P, Maltha J, Thriemer K, et al. Population-based incidence, seasonality and serotype distribution of invasive salmonellosis among children in Nanoro, rural Burkina Faso. PLoS ONE. 2017;12(7):1–17.CrossRef Guiraud I, Post A, Diallo SN, Lompo P, Maltha J, Thriemer K, et al. Population-based incidence, seasonality and serotype distribution of invasive salmonellosis among children in Nanoro, rural Burkina Faso. PLoS ONE. 2017;12(7):1–17.CrossRef
34.
go back to reference World Health Organization (WHO). World malaria report 2020: 20 years of global progress and challenges. Geneva: WHO Press; 2020. 1–6 p. World Health Organization (WHO). World malaria report 2020: 20 years of global progress and challenges. Geneva: WHO Press; 2020. 1–6 p.
35.
go back to reference Birnie E, Wiersinga WJ, Limmathurotsakul D, Grobusch MP. Melioidosis in Africa: should we be looking more closely? Future Microbiol. 2015;10(2):275–83.CrossRef Birnie E, Wiersinga WJ, Limmathurotsakul D, Grobusch MP. Melioidosis in Africa: should we be looking more closely? Future Microbiol. 2015;10(2):275–83.CrossRef
36.
go back to reference Steinmetz I, Wagner GE, Kanyala E, Sawadogo M, Soumeya H, Teferi M, et al. Melioidosis in Africa: time to uncover the true disease load. Trop Med Infect Dis. 2018;3(2):62.PubMedCentralCrossRef Steinmetz I, Wagner GE, Kanyala E, Sawadogo M, Soumeya H, Teferi M, et al. Melioidosis in Africa: time to uncover the true disease load. Trop Med Infect Dis. 2018;3(2):62.PubMedCentralCrossRef
37.
go back to reference Limmathurotsakul D, Golding N, Dance DAB, Messina JP, Pigott DM, Moyes CL, et al. Predicted global distribution of Burkholderia pseudomallei and burden of melioidosis. Nat Microbiol. 2016;1(1):6–10.CrossRef Limmathurotsakul D, Golding N, Dance DAB, Messina JP, Pigott DM, Moyes CL, et al. Predicted global distribution of Burkholderia pseudomallei and burden of melioidosis. Nat Microbiol. 2016;1(1):6–10.CrossRef
38.
go back to reference Reddy EA, Shaw AV, Crump JA. Community-acquired bloodstream infections in Africa: a systematic review and meta-analysis. Lancet Infect Dis. 2010;10(6):417–32.PubMedPubMedCentralCrossRef Reddy EA, Shaw AV, Crump JA. Community-acquired bloodstream infections in Africa: a systematic review and meta-analysis. Lancet Infect Dis. 2010;10(6):417–32.PubMedPubMedCentralCrossRef
39.
go back to reference Olayinka F, Ewald L, Steinglass R. Beyond new vaccine introduction: the uptake of pneumococcal conjugate vaccine in the African Region. Pan Afr Med J. 2017;27(Supp 3):3.PubMedPubMedCentral Olayinka F, Ewald L, Steinglass R. Beyond new vaccine introduction: the uptake of pneumococcal conjugate vaccine in the African Region. Pan Afr Med J. 2017;27(Supp 3):3.PubMedPubMedCentral
40.
go back to reference Jesumirhewe C, Ogunlowo PO, Olley M, Springer B, Allerberger F, Ruppitsch W. Accuracy of conventional identification methods used for Enterobacteriaceae isolates in three Nigerian hospitals. PeerJ. 2016;2016(9):1–12. Jesumirhewe C, Ogunlowo PO, Olley M, Springer B, Allerberger F, Ruppitsch W. Accuracy of conventional identification methods used for Enterobacteriaceae isolates in three Nigerian hospitals. PeerJ. 2016;2016(9):1–12.
41.
go back to reference Obeng-Nkrumah N, Labi AK, Addison NO, Labi JEM, Awuah-Mensah G. Trends in paediatric and adult bloodstream infections at a Ghanaian referral hospital: a retrospective study. Ann Clin Microbiol Antimicrob. 2016;15(1):1–10.CrossRef Obeng-Nkrumah N, Labi AK, Addison NO, Labi JEM, Awuah-Mensah G. Trends in paediatric and adult bloodstream infections at a Ghanaian referral hospital: a retrospective study. Ann Clin Microbiol Antimicrob. 2016;15(1):1–10.CrossRef
42.
go back to reference Mtunthama N, Gordon SB, Kusimbwe T, Zijlstra EE, Molyneux ME, French N. Blood culture collection technique and pneumococcal surveillance in Malawi during the four year period 2003–2006: an observational study. BMC Infect Dis. 2008;8:1–6.CrossRef Mtunthama N, Gordon SB, Kusimbwe T, Zijlstra EE, Molyneux ME, French N. Blood culture collection technique and pneumococcal surveillance in Malawi during the four year period 2003–2006: an observational study. BMC Infect Dis. 2008;8:1–6.CrossRef
43.
go back to reference Hill PC, Onyeama CO, Ikumapayi UNA, Secka O, Ameyaw S, Simmonds N, et al. Bacteraemia in patients admitted to an urban hospital in West Africa. BMC Infect Dis. 2007;7:1–8.CrossRef Hill PC, Onyeama CO, Ikumapayi UNA, Secka O, Ameyaw S, Simmonds N, et al. Bacteraemia in patients admitted to an urban hospital in West Africa. BMC Infect Dis. 2007;7:1–8.CrossRef
44.
go back to reference Archibald LK, Pallangyo K, Kazembe P, Reller LB. Blood culture contamination in Tanzania, Malawi, and the United States: a microbiological tale of three cities. J Clin Microbiol. 2006;44(12):4425–9.PubMedPubMedCentralCrossRef Archibald LK, Pallangyo K, Kazembe P, Reller LB. Blood culture contamination in Tanzania, Malawi, and the United States: a microbiological tale of three cities. J Clin Microbiol. 2006;44(12):4425–9.PubMedPubMedCentralCrossRef
46.
go back to reference Droz N, Hsia Y, Ellis S, Dramowski A, Sharland M, Basmaci R. Bacterial pathogens and resistance causing community acquired paediatric bloodstream infections in low- and middle-income countries: a systematic review and meta-analysis. Antimicrob Resist Infect Control. 2019;8(1):1–12.CrossRef Droz N, Hsia Y, Ellis S, Dramowski A, Sharland M, Basmaci R. Bacterial pathogens and resistance causing community acquired paediatric bloodstream infections in low- and middle-income countries: a systematic review and meta-analysis. Antimicrob Resist Infect Control. 2019;8(1):1–12.CrossRef
47.
go back to reference Manenzhe RI, Zar HJ, Nicol MP, Kaba M. The spread of carbapenemase-producing bacteria in Africa: a systematic review. J Antimicrob Chemother. 2015;70(1):23–40.PubMedCrossRef Manenzhe RI, Zar HJ, Nicol MP, Kaba M. The spread of carbapenemase-producing bacteria in Africa: a systematic review. J Antimicrob Chemother. 2015;70(1):23–40.PubMedCrossRef
49.
go back to reference Weiner LM, Webb AK, Limbago B, Dudeck MA, Patel J, Kallen AJ, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011–2014. Infect Control Hosp Epidemiol. 2016;37(11):1288–301.PubMedPubMedCentralCrossRef Weiner LM, Webb AK, Limbago B, Dudeck MA, Patel J, Kallen AJ, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011–2014. Infect Control Hosp Epidemiol. 2016;37(11):1288–301.PubMedPubMedCentralCrossRef
52.
go back to reference Kliegman R, Stanton B, Behrman RE, St Geme JW, Schor NF. Nelson textbook of pediatrics. 20th ed. Philadelphia: Elsevier; 2016. Kliegman R, Stanton B, Behrman RE, St Geme JW, Schor NF. Nelson textbook of pediatrics. 20th ed. Philadelphia: Elsevier; 2016.
55.
go back to reference Kadri SS, Adjemian J, Lai YL, Spaulding AB, Ricotta E, Rebecca Prevots D, et al. Difficult-to-treat resistance in Gram-negative bacteremia at 173 US hospitals: retrospective cohort analysis of prevalence, predictors, and outcome of resistance to all first-line agents. Clin Infect Dis. 2018;67(12):1803–14.PubMedPubMedCentral Kadri SS, Adjemian J, Lai YL, Spaulding AB, Ricotta E, Rebecca Prevots D, et al. Difficult-to-treat resistance in Gram-negative bacteremia at 173 US hospitals: retrospective cohort analysis of prevalence, predictors, and outcome of resistance to all first-line agents. Clin Infect Dis. 2018;67(12):1803–14.PubMedPubMedCentral
56.
go back to reference da Silva ACC, de Lima Feltraco Lizot L, Bastiani MF, Venzon Antunes M, Brucker N, Linden R. Dried plasma spots for therapeutic monitoring of amikacin: validation of an UHPLC-MS/MS assay and pharmacokinetic application. J Pharm Biomed Anal. 2020;184:113201.PubMedCrossRef da Silva ACC, de Lima Feltraco Lizot L, Bastiani MF, Venzon Antunes M, Brucker N, Linden R. Dried plasma spots for therapeutic monitoring of amikacin: validation of an UHPLC-MS/MS assay and pharmacokinetic application. J Pharm Biomed Anal. 2020;184:113201.PubMedCrossRef
Metadata
Title
Blood culture surveillance in a secondary care hospital in Benin: epidemiology of bloodstream infection pathogens and antimicrobial resistance
Authors
Sien Ombelet
Gutemberg Kpossou
Carine Kotchare
Esenam Agbobli
Frédéric Sogbo
Faridath Massou
Katrien Lagrou
Barbara Barbé
Dissou Affolabi
Jan Jacobs
Publication date
01-12-2022
Publisher
BioMed Central
Keywords
Antibiotic
Care
Published in
BMC Infectious Diseases / Issue 1/2022
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-022-07077-z

Other articles of this Issue 1/2022

BMC Infectious Diseases 1/2022 Go to the issue