Skip to main content
Top
Published in: BMC Infectious Diseases 1/2022

Open Access 01-12-2022 | SARS-CoV-2 | Research article

Surveillance of SARS-CoV-2 antibodies of patients in the local affected area during Wuhan lockdown

Authors: Yueting Tang, Jiayu Sun, Yumeng Yuan, Fen Yao, Bokun Zheng, Gui Yang, Wen Xie, Guangming Ye, Zhen Li, Xiaoyang Jiao, Yirong Li

Published in: BMC Infectious Diseases | Issue 1/2022

Login to get access

Abstract

Background

Serosurveillance is crucial in estimating the range of SARS-CoV-2 infections, predicting the possibility of another wave, and deciding on a vaccination strategy. To understand the herd immunity after the COVID-19 pandemic, the seroprevalence was measured in 3062 individuals with or without COVID-19 from the clinic.

Methods

The levels of SARS-CoV-2 antibody IgM and IgG were measured by the immuno-colloidal gold method. A fusion fragment of nucleocapsid and spike protein was detected by a qualitative test kit with sensitivity (89%) and specificity (98%).

Results

The seroprevalence rate for IgM and IgG in all outpatients was 2.81% and 7.51%, respectively. The sex-related prevalence rate of IgG was significantly higher (P < 0.05) in women than men. The highest positive rate of IgM was observed in individuals < 20 years of age (3.57%), while the highest seroprevalence for IgG was observed in persons > 60 years of age (8.61%). Positive rates of IgM and IgG in the convalescent patients were 31.82% and 77.27%, respectively, which was significantly higher than individuals with suspected syndromes or individuals without any clinical signs (P < 0.01). Seroprevalence for IgG in medical staff was markedly higher than those in residents. No significant difference of seroprevalence was found among patients with different comorbidities (P > 0.05).

Conclusions

The low positive rate of the SARS-CoV-2 IgM and nucleic acid (NA) test indicated that the SARS-CoV-2 outbreak is subsiding after 3 months, and the possibility of reintroduction of the virus from an unidentified natural reservoir is low. Seroprevalence provides information for humoral immunity and vaccine in the future.
Literature
1.
go back to reference Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis. 2020;20(5):533–4.CrossRef Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis. 2020;20(5):533–4.CrossRef
2.
go back to reference Piroth L, Cottenet J, Mariet AS, Bonniaud P, Blot M, Tubert-Bitter P, et al. Comparison of the characteristics, morbidity, and mortality of COVID-19 and seasonal influenza: a nationwide, population-based retrospective cohort study. Lancet Respir Med. 2021;9(3):251–9.CrossRef Piroth L, Cottenet J, Mariet AS, Bonniaud P, Blot M, Tubert-Bitter P, et al. Comparison of the characteristics, morbidity, and mortality of COVID-19 and seasonal influenza: a nationwide, population-based retrospective cohort study. Lancet Respir Med. 2021;9(3):251–9.CrossRef
4.
go back to reference Chang D, Lin M, Wei L, Xie L, Zhu G, Dela Cruz CS, et al. Epidemiologic and clinical characteristics of novel coronavirus infections involving 13 patients outside Wuhan, China. JAMA. 2020;323(11):1092–3.CrossRef Chang D, Lin M, Wei L, Xie L, Zhu G, Dela Cruz CS, et al. Epidemiologic and clinical characteristics of novel coronavirus infections involving 13 patients outside Wuhan, China. JAMA. 2020;323(11):1092–3.CrossRef
5.
go back to reference Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges. Int J Antimicrob Agents. 2020;55(3):105924.CrossRef Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges. Int J Antimicrob Agents. 2020;55(3):105924.CrossRef
6.
go back to reference Biscayart C, Angeleri P, Lloveras S, Chaves T, Schlagenhauf P, Rodriguez-Morales AJ. The next big threat to global health? 2019 novel coronavirus (2019-nCoV): what advice can we give to travellers?—Interim recommendations January 2020, from the Latin-American society for Travel Medicine (SLAMVI). Travel Med Infect Dis. 2020;33:101567.CrossRef Biscayart C, Angeleri P, Lloveras S, Chaves T, Schlagenhauf P, Rodriguez-Morales AJ. The next big threat to global health? 2019 novel coronavirus (2019-nCoV): what advice can we give to travellers?—Interim recommendations January 2020, from the Latin-American society for Travel Medicine (SLAMVI). Travel Med Infect Dis. 2020;33:101567.CrossRef
7.
go back to reference Zhao S, Lin Q, Ran J, Musa SS, Yang G, Wang W, et al. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: a data-driven analysis in the early phase of the outbreak. Int J Infect Dis. 2020;92:214–7.CrossRef Zhao S, Lin Q, Ran J, Musa SS, Yang G, Wang W, et al. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: a data-driven analysis in the early phase of the outbreak. Int J Infect Dis. 2020;92:214–7.CrossRef
8.
go back to reference Wu JT, Leung K, Leung GM. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. Lancet. 2020;395(10225):689–97.CrossRef Wu JT, Leung K, Leung GM. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. Lancet. 2020;395(10225):689–97.CrossRef
9.
go back to reference Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet (London, England). 2020;395(10223):497–506.CrossRef Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet (London, England). 2020;395(10223):497–506.CrossRef
10.
go back to reference Peiris JS, Lai ST, Poon LL, Guan Y, Yam LY, Lim W, et al. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet (London, England). 2003;361(9366):1319–25.CrossRef Peiris JS, Lai ST, Poon LL, Guan Y, Yam LY, Lim W, et al. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet (London, England). 2003;361(9366):1319–25.CrossRef
11.
go back to reference Daniel C, Anderson R, Buchmeier MJ, Fleming JO, Spaan WJ, Wege H, et al. Identification of an immunodominant linear neutralization domain on the S2 portion of the murine coronavirus spike glycoprotein and evidence that it forms part of complex tridimensional structure. J Virol. 1993;67(3):1185–94.CrossRef Daniel C, Anderson R, Buchmeier MJ, Fleming JO, Spaan WJ, Wege H, et al. Identification of an immunodominant linear neutralization domain on the S2 portion of the murine coronavirus spike glycoprotein and evidence that it forms part of complex tridimensional structure. J Virol. 1993;67(3):1185–94.CrossRef
12.
go back to reference Crowe JE Jr, Suara RO, Brock S, Kallewaard N, House F, Weitkamp JH. Genetic and structural determinants of virus neutralizing antibodies. Immunol Res. 2001;23(2–3):135–45.CrossRef Crowe JE Jr, Suara RO, Brock S, Kallewaard N, House F, Weitkamp JH. Genetic and structural determinants of virus neutralizing antibodies. Immunol Res. 2001;23(2–3):135–45.CrossRef
13.
go back to reference Xuehan Li, Yunbao P, Yirong Li. Status quo and review of clinical application of antibody detection for 2019⁃nCoV. Zhong Hua Jian Yan Yi Xue Za Zhi. 2020;43:691–6. Xuehan Li, Yunbao P, Yirong Li. Status quo and review of clinical application of antibody detection for 2019⁃nCoV. Zhong Hua Jian Yan Yi Xue Za Zhi. 2020;43:691–6.
14.
go back to reference Ma H, Zeng W, He H, Zhao D, Jiang D, Zhou P, et al. Serum IgA, IgM, and IgG responses in COVID-19. Cell Mol Immunol. 2020;17(7):773–5.CrossRef Ma H, Zeng W, He H, Zhao D, Jiang D, Zhou P, et al. Serum IgA, IgM, and IgG responses in COVID-19. Cell Mol Immunol. 2020;17(7):773–5.CrossRef
15.
go back to reference Zeng Z, Chen L, Pan Y, Deng Q, Ye G, Li Y, et al. Re: profile of specific antibodies to SARS-CoV-2: the first report. J Infect. 2020;81(1):e80–1.CrossRef Zeng Z, Chen L, Pan Y, Deng Q, Ye G, Li Y, et al. Re: profile of specific antibodies to SARS-CoV-2: the first report. J Infect. 2020;81(1):e80–1.CrossRef
16.
go back to reference Yang Z, Wang S, Li Q, Li Y, Wei M, Gao H, et al. Determining SARS sub-clinical infection: a longitudinal seroepidemiological study in recovered SARS patients and controls after an outbreak in a general hospital. Scand J Infect Dis. 2009;41(6–7):507–10.CrossRef Yang Z, Wang S, Li Q, Li Y, Wei M, Gao H, et al. Determining SARS sub-clinical infection: a longitudinal seroepidemiological study in recovered SARS patients and controls after an outbreak in a general hospital. Scand J Infect Dis. 2009;41(6–7):507–10.CrossRef
17.
go back to reference Meyer B, Drosten C, Muller MA. Serological assays for emerging coronaviruses: challenges and pitfalls. Virus Res. 2014;194:175–83.CrossRef Meyer B, Drosten C, Muller MA. Serological assays for emerging coronaviruses: challenges and pitfalls. Virus Res. 2014;194:175–83.CrossRef
19.
go back to reference Kaplan M, Gawrieh S, Cotler SJ, Jensen DM. Neutralizing antibodies in hepatitis C virus infection: a review of immunological and clinical characteristics. Gastroenterology. 2003;125(2):597–604.CrossRef Kaplan M, Gawrieh S, Cotler SJ, Jensen DM. Neutralizing antibodies in hepatitis C virus infection: a review of immunological and clinical characteristics. Gastroenterology. 2003;125(2):597–604.CrossRef
20.
go back to reference Gasmi A, Noor S, Tippairote T, Dadar M, Menzel A, Bjorklund G. Individual risk management strategy and potential therapeutic options for the COVID-19 pandemic. Clin Immunol. 2020;2015:108409.CrossRef Gasmi A, Noor S, Tippairote T, Dadar M, Menzel A, Bjorklund G. Individual risk management strategy and potential therapeutic options for the COVID-19 pandemic. Clin Immunol. 2020;2015:108409.CrossRef
21.
go back to reference Spinelli MA, Lynch KL, Yun C, Glidden DV, Peluso MJ, Henrich TJ, et al. SARS-CoV-2 seroprevalence, and IgG concentration and pseudovirus neutralising antibody titres after infection, compared by HIV status: a matched case-control observational study. Lancet HIV. 2021;8(6):e334–41.CrossRef Spinelli MA, Lynch KL, Yun C, Glidden DV, Peluso MJ, Henrich TJ, et al. SARS-CoV-2 seroprevalence, and IgG concentration and pseudovirus neutralising antibody titres after infection, compared by HIV status: a matched case-control observational study. Lancet HIV. 2021;8(6):e334–41.CrossRef
22.
go back to reference Hsueh PR, Kao CL, Lee CN, Chen LK, Ho MS, Sia C, et al. SARS antibody test for serosurveillance. Emerg Infect Dis. 2004;10(9):1558–62.CrossRef Hsueh PR, Kao CL, Lee CN, Chen LK, Ho MS, Sia C, et al. SARS antibody test for serosurveillance. Emerg Infect Dis. 2004;10(9):1558–62.CrossRef
Metadata
Title
Surveillance of SARS-CoV-2 antibodies of patients in the local affected area during Wuhan lockdown
Authors
Yueting Tang
Jiayu Sun
Yumeng Yuan
Fen Yao
Bokun Zheng
Gui Yang
Wen Xie
Guangming Ye
Zhen Li
Xiaoyang Jiao
Yirong Li
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2022
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-021-07010-w

Other articles of this Issue 1/2022

BMC Infectious Diseases 1/2022 Go to the issue