Skip to main content
Top
Published in: BMC Infectious Diseases 1/2022

Open Access 01-12-2022 | Research

Source attribution of salmonellosis by time and geography in New South Wales, Australia

Authors: Angus McLure, Craig Shadbolt, Patricia M. Desmarchelier, Martyn D. Kirk, Kathryn Glass

Published in: BMC Infectious Diseases | Issue 1/2022

Login to get access

Abstract

Background

Salmonella is a major cause of zoonotic illness around the world, arising from direct or indirect contact with a range of animal reservoirs. In the Australian state of New South Wales (NSW), salmonellosis is believed to be primarily foodborne, but the relative contribution of animal reservoirs is unknown.

Methods

The analysis included 4543 serotyped isolates from animal reservoirs and 30,073 serotyped isolates from domestically acquired human cases in NSW between January 2008 and August 2019. We used a Bayesian source attribution methodology to estimate the proportion of foodborne Salmonella infections attributable to broiler chickens, layer chickens, ruminants, pigs, and an unknown or unsampled source. Additional analyses included covariates for four time periods and five levels of rurality.

Results

A single serotype, S. Typhimurium, accounted for 65–75% of included cases during 2008–2014 but < 50% during 2017–2019. Attribution to layer chickens was highest during 2008–2010 (48.7%, 95% CrI 24.2–70.3%) but halved by 2017–2019 (23.1%, 95% CrI 5.7–38.9%) and was lower in the rural and remote populations than in the majority urban population. The proportion of cases attributed to the unsampled source was 11.3% (95% CrI 1.2%–22.1%) overall, but higher in rural and remote populations. The proportion of cases attributed to pork increased from approximately 20% in 2009–2016 to approximately 40% in 2017–2019, coinciding with a rise in cases due to Salmonella ser. 4,5,12:i:-.

Conclusion

Layer chickens were likely the primary reservoir of domestically acquired Salmonella infections in NSW circa 2010, but attribution to the source declined contemporaneously with increased vaccination of layer flocks and tighter food safety regulations for the handling of eggs.
Appendix
Available only for authorised users
Literature
2.
go back to reference Hall G, Yohannes K, Raupach J, Becker N, Kirk M. Estimating community incidence of Salmonella, Campylobacter, and Shiga Toxin–producing Escherichia coli infections, Australia. Emerg Infect Dis. 2008;14(10):1601–9.PubMedPubMedCentralCrossRef Hall G, Yohannes K, Raupach J, Becker N, Kirk M. Estimating community incidence of Salmonella, Campylobacter, and Shiga Toxin–producing Escherichia coli infections, Australia. Emerg Infect Dis. 2008;14(10):1601–9.PubMedPubMedCentralCrossRef
4.
go back to reference Ford L, Haywood P, Kirk MD, Lancsar E, Williamson DA, Glass K. Cost of Salmonella infections in Australia, 2015. J Food Prot. 2019;82(9):1607–14.PubMedCrossRef Ford L, Haywood P, Kirk MD, Lancsar E, Williamson DA, Glass K. Cost of Salmonella infections in Australia, 2015. J Food Prot. 2019;82(9):1607–14.PubMedCrossRef
5.
6.
go back to reference Mughini-Gras L, Enserink R, Friesema I, Heck M, Van Duynhoven Y, Van Pelt W. Risk factors for human salmonellosis originating from pigs, cattle, broiler chickens and egg laying hens: a combined case–control and source attribution analysis. PLoS ONE. 2014;9(2):e87933.PubMedPubMedCentralCrossRef Mughini-Gras L, Enserink R, Friesema I, Heck M, Van Duynhoven Y, Van Pelt W. Risk factors for human salmonellosis originating from pigs, cattle, broiler chickens and egg laying hens: a combined case–control and source attribution analysis. PLoS ONE. 2014;9(2):e87933.PubMedPubMedCentralCrossRef
7.
go back to reference Hald T, Vose D, Wegener HC, Koupeev T. A Bayesian approach to quantify the contribution of animal-food sources to human salmonellosis. Risk Anal. 2004;24(1):255–69.PubMedCrossRef Hald T, Vose D, Wegener HC, Koupeev T. A Bayesian approach to quantify the contribution of animal-food sources to human salmonellosis. Risk Anal. 2004;24(1):255–69.PubMedCrossRef
8.
go back to reference Mughini-Gras L, Barrucci F, Smid JH, Graziani C, Luzzi I, Ricci A, Barco L, Rosmini R, Havelaar AH, Van Pelt W, et al. Attribution of human Salmonella infections to animal and food sources in Italy (2002–2010): adaptations of the Dutch and modified Hald source attribution models. Epidemiol Infect. 2014;142(5):1070–82.PubMedCrossRef Mughini-Gras L, Barrucci F, Smid JH, Graziani C, Luzzi I, Ricci A, Barco L, Rosmini R, Havelaar AH, Van Pelt W, et al. Attribution of human Salmonella infections to animal and food sources in Italy (2002–2010): adaptations of the Dutch and modified Hald source attribution models. Epidemiol Infect. 2014;142(5):1070–82.PubMedCrossRef
9.
go back to reference Wahlström H, Andersson Y, Plym-Forshell L, Pires SM. Source attribution of human Salmonella cases in Sweden. Epidemiol Infect. 2011;139(8):1246–53.PubMedCrossRef Wahlström H, Andersson Y, Plym-Forshell L, Pires SM. Source attribution of human Salmonella cases in Sweden. Epidemiol Infect. 2011;139(8):1246–53.PubMedCrossRef
10.
go back to reference Fearnley EJ, Lal A, Bates J, Stafford R, Kirk MD, Glass K. Salmonella source attribution in a subtropical state of Australia: capturing environmental reservoirs of infection. Epidemiol Infect. 2018;146(15):1903–8.PubMedPubMedCentralCrossRef Fearnley EJ, Lal A, Bates J, Stafford R, Kirk MD, Glass K. Salmonella source attribution in a subtropical state of Australia: capturing environmental reservoirs of infection. Epidemiol Infect. 2018;146(15):1903–8.PubMedPubMedCentralCrossRef
11.
go back to reference Glass K, Fearnley E, Hocking H, Raupach J, Veitch M, Ford L, Kirk MD. Bayesian source attribution of salmonellosis in South Australia. Risk Anal. 2016;36(3):561–70.PubMedCrossRef Glass K, Fearnley E, Hocking H, Raupach J, Veitch M, Ford L, Kirk MD. Bayesian source attribution of salmonellosis in South Australia. Risk Anal. 2016;36(3):561–70.PubMedCrossRef
12.
go back to reference Munck N, Smith J, Bates J, Glass K, Hald T, Kirk MD. Source attribution of Salmonella in macadamia nuts to animal and environmental reservoirs in Queensland, Australia. Foodborne Pathog Dis. 2020;17(5):357–64.PubMedPubMedCentralCrossRef Munck N, Smith J, Bates J, Glass K, Hald T, Kirk MD. Source attribution of Salmonella in macadamia nuts to animal and environmental reservoirs in Queensland, Australia. Foodborne Pathog Dis. 2020;17(5):357–64.PubMedPubMedCentralCrossRef
13.
go back to reference Sears A, Baker MG, Wilson N, Marshall J, Muellner P, Campbell DM, Lake RJ, French NP. Marked campylobacteriosis decline after interventions aimed at poultry, New Zealand. Emerg Infect Dis. 2011;17(6):1007–15.PubMedPubMedCentralCrossRef Sears A, Baker MG, Wilson N, Marshall J, Muellner P, Campbell DM, Lake RJ, French NP. Marked campylobacteriosis decline after interventions aimed at poultry, New Zealand. Emerg Infect Dis. 2011;17(6):1007–15.PubMedPubMedCentralCrossRef
14.
go back to reference Baker MG, Grout L, Wilson N. Update on the campylobacter epidemic from chicken meat in New Zealand: the urgent need for an upgraded regulatory response. Epidemiol Infect. 2021;149:1–10.CrossRef Baker MG, Grout L, Wilson N. Update on the campylobacter epidemic from chicken meat in New Zealand: the urgent need for an upgraded regulatory response. Epidemiol Infect. 2021;149:1–10.CrossRef
15.
go back to reference Wattiau P, Boland C, Bertrand S. Methodologies for Salmonella enterica subsp. enterica subtyping: gold standards and alternatives. Appl Environ Microbiol. 2011;77(22):7877–85.PubMedPubMedCentralCrossRef Wattiau P, Boland C, Bertrand S. Methodologies for Salmonella enterica subsp. enterica subtyping: gold standards and alternatives. Appl Environ Microbiol. 2011;77(22):7877–85.PubMedPubMedCentralCrossRef
16.
go back to reference Thomson NR, Clayton DJ, Windhorst D, Vernikos G, Davidson S, Churcher C, Quail MA, Stevens M, Jones MA, Watson M, et al. Comparative genome analysis of Salmonella enteritidis PT4 and Salmonella gallinarum 287/91 provides insights into evolutionary and host adaptation pathways. Genome Res. 2008;18(10):1624–37.PubMedPubMedCentralCrossRef Thomson NR, Clayton DJ, Windhorst D, Vernikos G, Davidson S, Churcher C, Quail MA, Stevens M, Jones MA, Watson M, et al. Comparative genome analysis of Salmonella enteritidis PT4 and Salmonella gallinarum 287/91 provides insights into evolutionary and host adaptation pathways. Genome Res. 2008;18(10):1624–37.PubMedPubMedCentralCrossRef
17.
go back to reference Mughini-Gras L, Kooh P, Augustin J-C, David J, Fravalo P, Guillier L, Jourdan-Da-Silva N, Thébault A, Sanaa M, Watier L. Source attribution of foodborne diseases: potentialities, hurdles, and future expectations. Front Microbiol. 1983;2018:9. Mughini-Gras L, Kooh P, Augustin J-C, David J, Fravalo P, Guillier L, Jourdan-Da-Silva N, Thébault A, Sanaa M, Watier L. Source attribution of foodborne diseases: potentialities, hurdles, and future expectations. Front Microbiol. 1983;2018:9.
18.
go back to reference Pires SM, Vieira AR, Hald T, Cole D. Source attribution of human salmonellosis: an overview of methods and estimates. Foodborne Pathog Dis. 2014;11(9):667–76.PubMedCrossRef Pires SM, Vieira AR, Hald T, Cole D. Source attribution of human salmonellosis: an overview of methods and estimates. Foodborne Pathog Dis. 2014;11(9):667–76.PubMedCrossRef
19.
go back to reference Miller P, Marshall J, French N, Jewell C. sourceR: Classification and source attribution of infectious agents among heterogeneous populations. PLoS Comput Biol. 2017;13(5):e1005564.PubMedPubMedCentralCrossRef Miller P, Marshall J, French N, Jewell C. sourceR: Classification and source attribution of infectious agents among heterogeneous populations. PLoS Comput Biol. 2017;13(5):e1005564.PubMedPubMedCentralCrossRef
20.
go back to reference Mullner P, Jones G, Noble A, Spencer SEF, Hathaway S, French NP. Source attribution of food-borne zoonoses in New Zealand: a modified hald model. Risk Anal. 2009;29(7):970–84.PubMedCrossRef Mullner P, Jones G, Noble A, Spencer SEF, Hathaway S, French NP. Source attribution of food-borne zoonoses in New Zealand: a modified hald model. Risk Anal. 2009;29(7):970–84.PubMedCrossRef
21.
go back to reference Liao S-J, Marshall J, Hazelton ML, French NP. Extending statistical models for source attribution of zoonotic diseases: a study of campylobacteriosis. J R Soc Interface. 2019;16(150):20180534.PubMedPubMedCentralCrossRef Liao S-J, Marshall J, Hazelton ML, French NP. Extending statistical models for source attribution of zoonotic diseases: a study of campylobacteriosis. J R Soc Interface. 2019;16(150):20180534.PubMedPubMedCentralCrossRef
22.
go back to reference Wilson DJ, Gabriel E, Leatherbarrow AJH, Cheesbrough J, Gee S, Bolton E, Fox A, Fearnhead P, Hart CA, Diggle PJ. Tracing the source of Campylobacteriosis. PLoS Genet. 2008;4(9):e1000203.PubMedPubMedCentralCrossRef Wilson DJ, Gabriel E, Leatherbarrow AJH, Cheesbrough J, Gee S, Bolton E, Fox A, Fearnhead P, Hart CA, Diggle PJ. Tracing the source of Campylobacteriosis. PLoS Genet. 2008;4(9):e1000203.PubMedPubMedCentralCrossRef
23.
go back to reference Simpson KMJ, Mor SM, Ward MP, Walsh MG. Divergent geography of Salmonella wangata and Salmonella typhimurium epidemiology in New South Wales, Australia. One Health. 2019;7:100092.PubMedPubMedCentralCrossRef Simpson KMJ, Mor SM, Ward MP, Walsh MG. Divergent geography of Salmonella wangata and Salmonella typhimurium epidemiology in New South Wales, Australia. One Health. 2019;7:100092.PubMedPubMedCentralCrossRef
24.
go back to reference Hamilton DR, Smith P, Pointon A: National Salmonella and E. coli Monitoring (ESAM) data from Australian pig carcases from 2000 to 2006. In: Seventh international symposium on the epidemiology and control of foodborne pathogens in pork: 2007; Verona, Italy: Iowa State University Digital Press; 2007: 129–132. Hamilton DR, Smith P, Pointon A: National Salmonella and E. coli Monitoring (ESAM) data from Australian pig carcases from 2000 to 2006. In: Seventh international symposium on the epidemiology and control of foodborne pathogens in pork: 2007; Verona, Italy: Iowa State University Digital Press; 2007: 129–132.
25.
go back to reference Jordan D, Morris S. Analysis of ESAM data. Syndey: Meat & Livestock Australia Limited; 2006. Jordan D, Morris S. Analysis of ESAM data. Syndey: Meat & Livestock Australia Limited; 2006.
27.
go back to reference Australian eggs annual report 2017–18: Australian Eggs; 2018. Australian eggs annual report 2017–18: Australian Eggs; 2018.
29.
go back to reference Stan Development Team: Stan Modeling Language Users Guide and Reference Manual, 2.25. 2020. Stan Development Team: Stan Modeling Language Users Guide and Reference Manual, 2.25. 2020.
30.
go back to reference Stan Development Team: RStan: the R interface to Stan. 2020. Stan Development Team: RStan: the R interface to Stan. 2020.
31.
go back to reference Wickham H. The split-apply-combine strategy for data analysis. J Stat Softw. 2011;40(1):1–29.CrossRef Wickham H. The split-apply-combine strategy for data analysis. J Stat Softw. 2011;40(1):1–29.CrossRef
34.
go back to reference Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer; 2016.CrossRef Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer; 2016.CrossRef
35.
go back to reference Weaver T, Valcanis M, Mercoulia K, Sait M, Tuke J, Kiermeier A, Hogg G, Pointon A, Hamilton D, Billman-Jacobe H. Longitudinal study of Salmonella 1,4,[5],12:i:- shedding in five Australian pig herds. Prev Vet Med. 2017;136:19–28.PubMedCrossRef Weaver T, Valcanis M, Mercoulia K, Sait M, Tuke J, Kiermeier A, Hogg G, Pointon A, Hamilton D, Billman-Jacobe H. Longitudinal study of Salmonella 1,4,[5],12:i:- shedding in five Australian pig herds. Prev Vet Med. 2017;136:19–28.PubMedCrossRef
36.
go back to reference Lake RJ, Campbell DM, Hathaway SC, Ashmore E, Cressey PJ, Horn BJ, Pirikahu S, Sherwood JM, Baker MG, Shoemack P, et al. Source attributed case–control study of campylobacteriosis in New Zealand. Int J Infect Dis. 2020;103:268–77.PubMedCrossRef Lake RJ, Campbell DM, Hathaway SC, Ashmore E, Cressey PJ, Horn BJ, Pirikahu S, Sherwood JM, Baker MG, Shoemack P, et al. Source attributed case–control study of campylobacteriosis in New Zealand. Int J Infect Dis. 2020;103:268–77.PubMedCrossRef
37.
go back to reference Gan E, Baird FJ, Coloe PJ, Smooker PM. Phenotypic and molecular characterization of Salmonella enterica serovar Sofia, an avirulent species in Australian poultry. Microbiology. 2011;157(4):1056–65.PubMedCrossRef Gan E, Baird FJ, Coloe PJ, Smooker PM. Phenotypic and molecular characterization of Salmonella enterica serovar Sofia, an avirulent species in Australian poultry. Microbiology. 2011;157(4):1056–65.PubMedCrossRef
38.
go back to reference McPherson ME, Fielding JE, Telfer B, Stephens N, Combs BG, Rice BA, Fitzsimmons GJ, Gregory JE. A multi-jurisdiction outbreak of Salmonella typhimurium phage type 135 associated with purchasing chicken meat from a supermarket chain. Commun Dis Intell. 2006;30(4):449–55. McPherson ME, Fielding JE, Telfer B, Stephens N, Combs BG, Rice BA, Fitzsimmons GJ, Gregory JE. A multi-jurisdiction outbreak of Salmonella typhimurium phage type 135 associated with purchasing chicken meat from a supermarket chain. Commun Dis Intell. 2006;30(4):449–55.
39.
go back to reference New South Wales Food Authority. New South Wales Government food safety strategy 2015–2021: Safe food from paddock to plate. Sydney: New South Wales Food Authority; 2014. New South Wales Food Authority. New South Wales Government food safety strategy 2015–2021: Safe food from paddock to plate. Sydney: New South Wales Food Authority; 2014.
40.
go back to reference Ward K, Franklin N, Furlong C, Polkinghorne BG, Flint J. New South Wales OzFoodNet Annual Report: 2013. Sydney: Health Protection NSW; 2014. Ward K, Franklin N, Furlong C, Polkinghorne BG, Flint J. New South Wales OzFoodNet Annual Report: 2013. Sydney: Health Protection NSW; 2014.
41.
go back to reference New South Wales Health Communicable Diseases Branch. New South Wales OzFoodNet Annual Report: 2012. Sydney: Health Protection NSW; 2013. New South Wales Health Communicable Diseases Branch. New South Wales OzFoodNet Annual Report: 2012. Sydney: Health Protection NSW; 2013.
42.
go back to reference New South Wales Health Communicable Diseases Branch. New South Wales OzFoodNet Surveillance Report: 2018. Sydney: Health Protection NSW; 2019. New South Wales Health Communicable Diseases Branch. New South Wales OzFoodNet Surveillance Report: 2018. Sydney: Health Protection NSW; 2019.
43.
go back to reference Collins J, Simpson KMJ, Bell G, Durrheim DN, Hill-Cawthorne GA, Hope K, Howard P, Kohlenberg T, Lawrence K, Lilly K, et al. A One Health investigation of Salmonella enterica serovar Wangata in north-eastern New South Wales, Australia, 2016–2017. Epidemiol Infect. 2019;147:1.CrossRef Collins J, Simpson KMJ, Bell G, Durrheim DN, Hill-Cawthorne GA, Hope K, Howard P, Kohlenberg T, Lawrence K, Lilly K, et al. A One Health investigation of Salmonella enterica serovar Wangata in north-eastern New South Wales, Australia, 2016–2017. Epidemiol Infect. 2019;147:1.CrossRef
44.
go back to reference Simpson KMJ, Hill-Cawthorne GA, Ward MP, Mor SM. Diversity of Salmonella serotypes from humans, food, domestic animals and wildlife in New South Wales, Australia. BMC Infect Dis. 2018;18(1):1.CrossRef Simpson KMJ, Hill-Cawthorne GA, Ward MP, Mor SM. Diversity of Salmonella serotypes from humans, food, domestic animals and wildlife in New South Wales, Australia. BMC Infect Dis. 2018;18(1):1.CrossRef
45.
go back to reference Smith HG, Bean DC, Hawkey J, Clarke RH, Loyn R, Larkins J-A, Hassell C, Valcanis M, Pitchers W, Greenhill AR. Salmonella enterica Serovar Hvittingfoss in Bar-Tailed Godwits (Limosa lapponica) from Roebuck Bay, Northwestern Australia. Appl Environ Microbiol. 2020;86(19):1312.CrossRef Smith HG, Bean DC, Hawkey J, Clarke RH, Loyn R, Larkins J-A, Hassell C, Valcanis M, Pitchers W, Greenhill AR. Salmonella enterica Serovar Hvittingfoss in Bar-Tailed Godwits (Limosa lapponica) from Roebuck Bay, Northwestern Australia. Appl Environ Microbiol. 2020;86(19):1312.CrossRef
46.
go back to reference Scheelings TF, Lightfoot D, Holz P. Prevalence of Salmonella in Australian reptiles. J Wildl Dis. 2011;47(1):1–11.PubMedCrossRef Scheelings TF, Lightfoot D, Holz P. Prevalence of Salmonella in Australian reptiles. J Wildl Dis. 2011;47(1):1–11.PubMedCrossRef
47.
go back to reference Iveson JB, Mackay-Scollay EM, Bamford V. Salmonella and Arizona in reptiles and man in Western Australia. J Hygiene. 1969;67(1):135–45.CrossRef Iveson JB, Mackay-Scollay EM, Bamford V. Salmonella and Arizona in reptiles and man in Western Australia. J Hygiene. 1969;67(1):135–45.CrossRef
48.
go back to reference Hoque MA, Burgess GW, Greenhil AR, Hedlefs R, Skerratt LF. Causes of morbidity and mortality of wild aquatic birds at Billabong Sanctuary, Townsville, North Queensland, Australia. Avian Dis. 2012;56(1):249–56.PubMedCrossRef Hoque MA, Burgess GW, Greenhil AR, Hedlefs R, Skerratt LF. Causes of morbidity and mortality of wild aquatic birds at Billabong Sanctuary, Townsville, North Queensland, Australia. Avian Dis. 2012;56(1):249–56.PubMedCrossRef
49.
go back to reference Ward MP, Cowled BD, Galea F, Garner MG, Laffan SW, Marsh I, Negus K, Sarre SD, Woolnough AP. Salmonella infection in a remote, isolated wild pig population. Vet Microbiol. 2013;162(2–4):921–9.PubMedCrossRef Ward MP, Cowled BD, Galea F, Garner MG, Laffan SW, Marsh I, Negus K, Sarre SD, Woolnough AP. Salmonella infection in a remote, isolated wild pig population. Vet Microbiol. 2013;162(2–4):921–9.PubMedCrossRef
50.
go back to reference Baseline survey on the prevalence and concentration of Salmonella and Campylobacter in chicken meat on-farm and at primary processing; 2010. Baseline survey on the prevalence and concentration of Salmonella and Campylobacter in chicken meat on-farm and at primary processing; 2010.
Metadata
Title
Source attribution of salmonellosis by time and geography in New South Wales, Australia
Authors
Angus McLure
Craig Shadbolt
Patricia M. Desmarchelier
Martyn D. Kirk
Kathryn Glass
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2022
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-021-06950-7

Other articles of this Issue 1/2022

BMC Infectious Diseases 1/2022 Go to the issue