Skip to main content
Top
Published in: BMC Infectious Diseases 1/2019

Open Access 01-12-2019 | Research article

Evaluation of the impact of the Accelerate Pheno™ system on time to result for differing antimicrobial stewardship intervention models in patients with gram-negative bloodstream infections

Authors: Gerald Elliott, Michael Malczynski, Viktorjia O. Barr, Doaa Aljefri, David Martin, Sarah Sutton, Teresa R. Zembower, Michael Postelnick, Chao Qi

Published in: BMC Infectious Diseases | Issue 1/2019

Login to get access

Abstract

Background

Initiating early effective antimicrobial therapy is the most important intervention demonstrated to decrease mortality in patients with gram-negative bacteremia with sepsis. Rapid MIC-based susceptibility results make it possible to optimize antimicrobial use through both escalation and de-escalation.

Method

We prospectively evaluated the performance of the Accelerate Pheno™ system (AXDX) for identification and susceptibility testing of gram-negative species and compared the time to result between AXDX and routine standard of care (SOC) using 82 patient samples and 18 challenge organisms with various confirmed resistance mechanisms. The potential impact of AXDX on time to antimicrobial optimization was investigated with various simulated antimicrobial stewardship (ASTEW) intervention models.

Results

The overall positive and negative percent agreement of AXDX for identification were 100 and 99.9%, respectively. Compared to VITEK® 2, the overall essential agreement was 96.1% and categorical agreement was 95.4%. No very major or major errors were detected. AXDX reduced the time to identification by an average of 11.8 h and time to susceptibility by an average of 36.7 h. In 27 patients evaluated for potential clinical impact of AXDX on antimicrobial optimization, 18 (67%) patients could potentially have had therapy optimized sooner with an average of 18.1 h reduction in time to optimal therapy.

Conclusion

Utilization of AXDX coupled with simulated ASTEW intervention notification substantially shortened the time to potential antimicrobial optimization in this cohort of patients with gram-negative bacteremia. This improvement in time occurred when ASTEW support was limited to an 8-h coverage model.
Literature
1.
go back to reference Gaynes R, Edwards JR. National Nosocomial Infections Surveillance System. Overview of nosocomial infections caused by gram-negative bacilli. Clin Infect Dis. 2005;41:848.CrossRef Gaynes R, Edwards JR. National Nosocomial Infections Surveillance System. Overview of nosocomial infections caused by gram-negative bacilli. Clin Infect Dis. 2005;41:848.CrossRef
2.
go back to reference Sievert DM, Ricks P, Edwards JR, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009-2010. Infect Control Hosp Epidemiol. 2013;34:1.CrossRef Sievert DM, Ricks P, Edwards JR, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009-2010. Infect Control Hosp Epidemiol. 2013;34:1.CrossRef
3.
go back to reference Albrecht SJ, Fishman NO, Kitchen J, et al. Reemergence of gram-negative health care-associated bloodstream infections. Arch Intern Med. 2006;166:1289.CrossRef Albrecht SJ, Fishman NO, Kitchen J, et al. Reemergence of gram-negative health care-associated bloodstream infections. Arch Intern Med. 2006;166:1289.CrossRef
4.
go back to reference Gaynes R. The impact of antimicrobial use on the emergence of antimicrobial-resistant bacteria in hospitals. Infect Dis Clin N Am. 1997;11(4):757–65.CrossRef Gaynes R. The impact of antimicrobial use on the emergence of antimicrobial-resistant bacteria in hospitals. Infect Dis Clin N Am. 1997;11(4):757–65.CrossRef
5.
go back to reference Buehler SS, Madison B, Snyder SR, Derzon JH, Cornish NE, Saubolle MA, Weissfeld AS, Weinstein MP, Liebow EB, Wolk DM. Effectiveness of practices to increase timeliness of providing targeted therapy for inpatients with bloodstream infections: a laboratory medicine best practices systematic review and meta-analysis. Clin Microbiol Rev. 2016;29(1):59–103.CrossRef Buehler SS, Madison B, Snyder SR, Derzon JH, Cornish NE, Saubolle MA, Weissfeld AS, Weinstein MP, Liebow EB, Wolk DM. Effectiveness of practices to increase timeliness of providing targeted therapy for inpatients with bloodstream infections: a laboratory medicine best practices systematic review and meta-analysis. Clin Microbiol Rev. 2016;29(1):59–103.CrossRef
6.
go back to reference Bauer KA, Perez KK, Forrest GN, Goff DA. Review of rapid diagnostic tests used by antimicrobial stewardship programs. Clin Infect Dis. 2014;59(Suppl 3):S134–45.CrossRef Bauer KA, Perez KK, Forrest GN, Goff DA. Review of rapid diagnostic tests used by antimicrobial stewardship programs. Clin Infect Dis. 2014;59(Suppl 3):S134–45.CrossRef
7.
go back to reference Sinha M, Jupe J, Mack H, Coleman TP, Lawrence SM, Fraley SI. Emerging Technologies for Molecular Diagnosis of Sepsis. Clin Microbiol Rev. 2018;31(2):1–26.CrossRef Sinha M, Jupe J, Mack H, Coleman TP, Lawrence SM, Fraley SI. Emerging Technologies for Molecular Diagnosis of Sepsis. Clin Microbiol Rev. 2018;31(2):1–26.CrossRef
8.
go back to reference Accelerate Diagnostics, Inc. Accelerate PhenoTest BC kit instructions for use. Tucson, AZ: Diagnostics, Inc; 2017. Accelerate Diagnostics, Inc. Accelerate PhenoTest BC kit instructions for use. Tucson, AZ: Diagnostics, Inc; 2017.
9.
go back to reference Timbrook TT, Morton JB, Mcconeghy KW, Caffrey AR, Mylonakis E, Laplante KL. The effect of molecular rapid diagnostic testing on clinical outcomes in bloodstream infections: a systematic review and meta-analysis. Clin Infect Dis. 2017;64(1):15–23.CrossRef Timbrook TT, Morton JB, Mcconeghy KW, Caffrey AR, Mylonakis E, Laplante KL. The effect of molecular rapid diagnostic testing on clinical outcomes in bloodstream infections: a systematic review and meta-analysis. Clin Infect Dis. 2017;64(1):15–23.CrossRef
10.
go back to reference Holtzman C, Whitney D, Barlam T, Miller NS. Assessment of impact of peptide nucleic acid fluorescence in situ hybridization for rapid identification of coagulase-negative staphylococci in the absence of antimicrobial stewardship intervention. J Clin Microbiol. 2011;49(4):1581–2.CrossRef Holtzman C, Whitney D, Barlam T, Miller NS. Assessment of impact of peptide nucleic acid fluorescence in situ hybridization for rapid identification of coagulase-negative staphylococci in the absence of antimicrobial stewardship intervention. J Clin Microbiol. 2011;49(4):1581–2.CrossRef
11.
go back to reference Sofjan AK, Casey BO, Xu BA, Amadio J, Restrepo A, Alam MJ, Garey KW. Accelerate PhenoTest (TM) BC kit versus conventional methods for identification and antimicrobial susceptibility testing of gram-positive bloodstream isolates: potential implications for antimicrobial stewardship. Ann Pharmacother. 2018;52(8):754–62.CrossRef Sofjan AK, Casey BO, Xu BA, Amadio J, Restrepo A, Alam MJ, Garey KW. Accelerate PhenoTest (TM) BC kit versus conventional methods for identification and antimicrobial susceptibility testing of gram-positive bloodstream isolates: potential implications for antimicrobial stewardship. Ann Pharmacother. 2018;52(8):754–62.CrossRef
12.
go back to reference Marschal M, Bachmaier J, Autenrieth I, Oberhettinger P, Willmann M, Peter S. Evaluation of the accelerate Pheno system for fast identification and antimicrobial susceptibility testing from positive blood cultures in bloodstream infections caused by gram-negative pathogens. J Clin Microbiol. 2017;55(7):2116–26.CrossRef Marschal M, Bachmaier J, Autenrieth I, Oberhettinger P, Willmann M, Peter S. Evaluation of the accelerate Pheno system for fast identification and antimicrobial susceptibility testing from positive blood cultures in bloodstream infections caused by gram-negative pathogens. J Clin Microbiol. 2017;55(7):2116–26.CrossRef
13.
go back to reference Charnot-Katsikas T. V, love N, hill B, Bethel C, Boonlayangoor S, Beavis KG. Use of the accelerate Pheno system for identification and antimicrobial susceptibility testing of pathogens in positive blood cultures and impact on time to results and workflow. J Clin Microbiol. 2017;56(1):e01166–17.CrossRef Charnot-Katsikas T. V, love N, hill B, Bethel C, Boonlayangoor S, Beavis KG. Use of the accelerate Pheno system for identification and antimicrobial susceptibility testing of pathogens in positive blood cultures and impact on time to results and workflow. J Clin Microbiol. 2017;56(1):e01166–17.CrossRef
14.
go back to reference Bookstaver PB, Nimmich EB, Justo JA, Kohn J, Hammer KL, Troficanto C, Albrecht HA, Al-Hasan MN. Effect of an Antimicrobial Stewardship and Rapid Diagnostic Testing Bundle on Early Streamlining of Antimicrobial Therapy in Gram-Negative Bloodstream Infections. Antimicrob Agents Chemother. 2017;61(9). https://doi.org/10.1128/AAC.00189-17. Bookstaver PB, Nimmich EB, Justo JA, Kohn J, Hammer KL, Troficanto C, Albrecht HA, Al-Hasan MN. Effect of an Antimicrobial Stewardship and Rapid Diagnostic Testing Bundle on Early Streamlining of Antimicrobial Therapy in Gram-Negative Bloodstream Infections. Antimicrob Agents Chemother. 2017;61(9). https://​doi.​org/​10.​1128/​AAC.​00189-17.
Metadata
Title
Evaluation of the impact of the Accelerate Pheno™ system on time to result for differing antimicrobial stewardship intervention models in patients with gram-negative bloodstream infections
Authors
Gerald Elliott
Michael Malczynski
Viktorjia O. Barr
Doaa Aljefri
David Martin
Sarah Sutton
Teresa R. Zembower
Michael Postelnick
Chao Qi
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2019
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-019-4591-1

Other articles of this Issue 1/2019

BMC Infectious Diseases 1/2019 Go to the issue