Skip to main content
Top
Published in: BMC Infectious Diseases 1/2019

Open Access 01-12-2019 | Research article

Efficacy of pulsed-xenon ultraviolet light for disinfection of high-touch surfaces in an Ecuadorian hospital

Authors: José E. Villacís, Mario Lopez, Deborah Passey, Manuel Hernando Santillán, Germán Verdezoto, Freddy Trujillo, Gustavo Paredes, Carmen Alarcón, Ronny Horvath, Mark Stibich

Published in: BMC Infectious Diseases | Issue 1/2019

Login to get access

Abstract

Background

Hospital environment in patient care has been linked on healthcare-associated infections (HAI). No touch disinfection technologies that utilize pulsed xenon ultraviolet light has been recognized to prevent infection in contaminated environments. The purpose of this study was: 1) to evaluate the effectiveness of pulsed-xenon ultraviolet light (PX-UV) disinfection for the reduction of bacteria on environmental surfaces of Hospital General Enrique Garcés, and 2) to evaluate the in-vitro efficacy against multi-drug resistance microorganisms.

Methods

This was a quality-improvement study looking at cleaning and disinfection of patient areas. During the study, a total of 146 surfaces from 17 rooms were sampled in a secondary 329-bed public medical center. Microbiological samples of high-touch surfaces were taken after terminal manual cleaning and after pulsed xenon ultraviolet disinfection. Cleaning staff were blinded to the study purpose and told clean following their usual protocols. For positive cultures PCR identification for carbapenemase-resistance genes (blaKPC, blaIMP, blaVIM, and blaNDM) were analyzed and confirmed by sequencing. The total number of colony forming units (CFU) were obtained and statistical analyses were conducted using Wilcoxon Rank Sum tests to evaluate the difference in CFU between terminal manual cleaning and after pulsed xenon ultraviolet disinfection.

Results

After manual disinfection of 124 surfaces showed a total of 3569 CFU which dropped to 889 CFU in 80 surfaces after pulsed xenon disinfection (p < 0.001). Overall, the surface and environmental contamination was reduced by 75% after PX-UV compared to manual cleaning and disinfection. There were statistically significant decreases in CFU counts of high touch surfaces in OR 87% (p < 0.001) and patient rooms 76% (p < 0.001). Four rooms presented serine carbapenemases blaKPC, and metallo beta-lactamases blaNDM, blaVIM, blaIMP. confirmed by PCR and sequencing. The in-vitro testing with endemic strains found that after five minutes of pulsed xenon ultraviolet exposure an 8-log reduction was achieved in all cases.

Conclusion

This study is one of the first of its kind in an Ecuador Hospital. We found that pulsed-xenon ultraviolet disinfection technology is an efficacious complement to the established manual cleaning protocols and guidelines in the significant reduction of MDRO.
Literature
2.
go back to reference Grundmann H, Aires-de-Sousa M, Boyce J, Tiemersma E. Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat. Lancet. 2006;368(9538):874–85.CrossRef Grundmann H, Aires-de-Sousa M, Boyce J, Tiemersma E. Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat. Lancet. 2006;368(9538):874–85.CrossRef
3.
go back to reference Allegranzi B, Nejad SB, Combescure C, Graafmans W, Attar H, Donaldson L, et al. Burden of endemic health-care-associated infection in developing countries: systematic review and meta-analysis. Lancet. 2011;377(9761):228–41.CrossRef Allegranzi B, Nejad SB, Combescure C, Graafmans W, Attar H, Donaldson L, et al. Burden of endemic health-care-associated infection in developing countries: systematic review and meta-analysis. Lancet. 2011;377(9761):228–41.CrossRef
4.
go back to reference Escandón-Vargas K, Reyes S, Gutiérrez S, Villegas MV. The epidemiology of carbapenemases in Latin America and the Caribbean. Expert Rev Anti-Infect Ther. 2017;15(3):277–97.CrossRef Escandón-Vargas K, Reyes S, Gutiérrez S, Villegas MV. The epidemiology of carbapenemases in Latin America and the Caribbean. Expert Rev Anti-Infect Ther. 2017;15(3):277–97.CrossRef
5.
go back to reference Dancer SJ. The role of environmental cleaning in the control of hospital-acquired infection. J Hosp Infect. 2009;73(4):378–85.CrossRef Dancer SJ. The role of environmental cleaning in the control of hospital-acquired infection. J Hosp Infect. 2009;73(4):378–85.CrossRef
6.
go back to reference Weber DJ, Rutala WA. Understanding and preventing transmission of healthcare-associated pathogens due to the contaminated hospital environment. Infect Control Hosp Epidemiol. 2013;34(05):449–52.CrossRef Weber DJ, Rutala WA. Understanding and preventing transmission of healthcare-associated pathogens due to the contaminated hospital environment. Infect Control Hosp Epidemiol. 2013;34(05):449–52.CrossRef
7.
go back to reference Carling PC, Parry MF, Von Beheren SM, Group HEHS. Identifying Opportunities to Enhance Environmental Cleaning in 23 Acute Care Hospitals. Infect Control Hosp Epidemiol. 2008 Jan 2 [cited 2018 Oct 7];29(01):1–7.CrossRef Carling PC, Parry MF, Von Beheren SM, Group HEHS. Identifying Opportunities to Enhance Environmental Cleaning in 23 Acute Care Hospitals. Infect Control Hosp Epidemiol. 2008 Jan 2 [cited 2018 Oct 7];29(01):1–7.CrossRef
8.
go back to reference Dettenkofer M, Spencer RC. Importance of environmental decontamination--a critical view. J Hosp Infect. 2007 Jun 1 [cited 2018 Oct 7];65(Suppl 2):55–7.CrossRef Dettenkofer M, Spencer RC. Importance of environmental decontamination--a critical view. J Hosp Infect. 2007 Jun 1 [cited 2018 Oct 7];65(Suppl 2):55–7.CrossRef
9.
go back to reference Stibich M, Stachowiak J, Tanner B, Berkheiser M, Moore L, Raad I, et al. Evaluation of a pulsed-xenon ultraviolet room disinfection device for impact on hospital operations and microbial reduction. Infect Control Hosp Epidemiol. 2011;32(03):286–8.CrossRef Stibich M, Stachowiak J, Tanner B, Berkheiser M, Moore L, Raad I, et al. Evaluation of a pulsed-xenon ultraviolet room disinfection device for impact on hospital operations and microbial reduction. Infect Control Hosp Epidemiol. 2011;32(03):286–8.CrossRef
10.
go back to reference Nerandzic MM, Thota P, Sankar CT, Jencson A, Cadnum JL, Ray AJ, et al. Evaluation of a pulsed xenon ultraviolet disinfection system for reduction of healthcare-associated pathogens in hospital rooms. Infect Control Hosp Epidemiol. 2015;36(2):192–7.CrossRef Nerandzic MM, Thota P, Sankar CT, Jencson A, Cadnum JL, Ray AJ, et al. Evaluation of a pulsed xenon ultraviolet disinfection system for reduction of healthcare-associated pathogens in hospital rooms. Infect Control Hosp Epidemiol. 2015;36(2):192–7.CrossRef
11.
go back to reference Haas JP, Menz J, Dusza S, Montecalvo MA. Implementation and impact of ultraviolet environmental disinfection in an acute care setting. Am J Infect Control. 2014;42(6):586–90.CrossRef Haas JP, Menz J, Dusza S, Montecalvo MA. Implementation and impact of ultraviolet environmental disinfection in an acute care setting. Am J Infect Control. 2014;42(6):586–90.CrossRef
12.
go back to reference Hosein I, Madeloso R, Nagaratnam W, Villamaria F, Stock E, Jinadatha C. Evaluation of a pulsed xenon ultraviolet light device for isolation room disinfection in a United Kingdom hospital. Am J Infect Control. 2016;44(9):e157–61.CrossRef Hosein I, Madeloso R, Nagaratnam W, Villamaria F, Stock E, Jinadatha C. Evaluation of a pulsed xenon ultraviolet light device for isolation room disinfection in a United Kingdom hospital. Am J Infect Control. 2016;44(9):e157–61.CrossRef
13.
go back to reference Green C, Pamplin JC, Chafin KN, Murray CK, Yun HC. Pulsed-xenon ultraviolet light disinfection in a burn unit: impact on environmental bioburden, multidrug- resistant organism acquisition and healthcare associated infections. Burns. 2017;43(2):388–96.CrossRef Green C, Pamplin JC, Chafin KN, Murray CK, Yun HC. Pulsed-xenon ultraviolet light disinfection in a burn unit: impact on environmental bioburden, multidrug- resistant organism acquisition and healthcare associated infections. Burns. 2017;43(2):388–96.CrossRef
14.
go back to reference Jinadatha C, Quezada R, Huber TW, Williams JB, Zeber JE, Copeland LA. Evaluation of a pulsed-xenon ultraviolet room disinfection device for impact on contamination levels of methicillin-resistant Staphylococcus aureus. BMC Infect Dis. 2014;14(1):1–7.CrossRef Jinadatha C, Quezada R, Huber TW, Williams JB, Zeber JE, Copeland LA. Evaluation of a pulsed-xenon ultraviolet room disinfection device for impact on contamination levels of methicillin-resistant Staphylococcus aureus. BMC Infect Dis. 2014;14(1):1–7.CrossRef
15.
go back to reference Stibich BM. Reduction of healthcare associated infections through the use of pulsed xenon ultraviolet disinfection; 2016. p. 1–5. Stibich BM. Reduction of healthcare associated infections through the use of pulsed xenon ultraviolet disinfection; 2016. p. 1–5.
16.
go back to reference Levin J, Riley LS, Parrish C, English D, Ahn S. The effect of portable pulsed xenón ultraviolet light after terminal cleaning on hospital-acquired Clostridium difficile infection in a community hospital. Am J Infect Control. 2013;41:746–8.CrossRef Levin J, Riley LS, Parrish C, English D, Ahn S. The effect of portable pulsed xenón ultraviolet light after terminal cleaning on hospital-acquired Clostridium difficile infection in a community hospital. Am J Infect Control. 2013;41:746–8.CrossRef
17.
go back to reference Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis. 2011;70:119–23.CrossRef Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis. 2011;70:119–23.CrossRef
18.
go back to reference Simmons S, Dale C, Holt J, Passey DG, Stibich M. Environmental effectiveness of pulsed-xenon light in the operating room. Am J Infect Control. 2018;46(9):1003–8.CrossRef Simmons S, Dale C, Holt J, Passey DG, Stibich M. Environmental effectiveness of pulsed-xenon light in the operating room. Am J Infect Control. 2018;46(9):1003–8.CrossRef
19.
go back to reference Romero-Alvarez D, Reyes J, Quezada V, Satán C, Cevallos N, Barrera S, Trueba G, Escobar LE, Villacís JE. First case of New Delhi metallo-β-lactamase in Klebsiella pneumoniae from Ecuador: An update for South America. Int J Infect Dis. 2017;65:119–21.CrossRef Romero-Alvarez D, Reyes J, Quezada V, Satán C, Cevallos N, Barrera S, Trueba G, Escobar LE, Villacís JE. First case of New Delhi metallo-β-lactamase in Klebsiella pneumoniae from Ecuador: An update for South America. Int J Infect Dis. 2017;65:119–21.CrossRef
20.
go back to reference Villacís JE, Bovera M, Romero-Alvarez D, Cornejo F, Albán V, Trueba G, Dorn HF, Reyes JA. NDM-1 carbapenemase in Acinetobacter baumannii sequence type 32 in Ecuador. New Microbes New Infect. 2019;29:100526.CrossRef Villacís JE, Bovera M, Romero-Alvarez D, Cornejo F, Albán V, Trueba G, Dorn HF, Reyes JA. NDM-1 carbapenemase in Acinetobacter baumannii sequence type 32 in Ecuador. New Microbes New Infect. 2019;29:100526.CrossRef
21.
go back to reference Simmons S, Morgan M, Hopkin T, Helsabeck K, Stachowiak J, Stibich M. Impact of a multi-hospital intervention utilizing screening, hand hygiene education and pulsed xenon ultraviolet (PX-UV) on the rate of hospital associated meticillin resistant Staphylococcus aureus infection. J Infect Prev. 2013;14:172–4.CrossRef Simmons S, Morgan M, Hopkin T, Helsabeck K, Stachowiak J, Stibich M. Impact of a multi-hospital intervention utilizing screening, hand hygiene education and pulsed xenon ultraviolet (PX-UV) on the rate of hospital associated meticillin resistant Staphylococcus aureus infection. J Infect Prev. 2013;14:172–4.CrossRef
22.
go back to reference Peters et al. Keeping hospitals clean and safe without breaking the bank; summary of the healthcare cleaning forum 2018. Antimicrob Resist Infect Control. 2018;7:132.CrossRef Peters et al. Keeping hospitals clean and safe without breaking the bank; summary of the healthcare cleaning forum 2018. Antimicrob Resist Infect Control. 2018;7:132.CrossRef
Metadata
Title
Efficacy of pulsed-xenon ultraviolet light for disinfection of high-touch surfaces in an Ecuadorian hospital
Authors
José E. Villacís
Mario Lopez
Deborah Passey
Manuel Hernando Santillán
Germán Verdezoto
Freddy Trujillo
Gustavo Paredes
Carmen Alarcón
Ronny Horvath
Mark Stibich
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2019
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-019-4200-3

Other articles of this Issue 1/2019

BMC Infectious Diseases 1/2019 Go to the issue