Skip to main content
Top
Published in: BMC Infectious Diseases 1/2019

Open Access 01-12-2019 | Streptococci | Case report

Group A streptococcus endocarditis in children: 2 cases and a review of the literature

Authors: Nao Ogura, Kouki Tomari, Tomotada Takayama, Naoya Tonegawa, Teppei Okawa, Takashi Matsuoka, Mami Nakayashiro, Tsutomu Matsumora

Published in: BMC Infectious Diseases | Issue 1/2019

Login to get access

Abstract

Background

Infective endocarditis (IE) is defined as endocarditis caused by microorganisms (bacteria or fungi) involving either the heart or great vessels. The clinical course of IE can be complicated by cardiac dysfunction and bacterial embolization to virtually any organ. Staphylococcus aureus and viridans group streptococci are the most common causative organisms, whereas group A Streptococcus (GAS) is less common. Although some GAS serotypes have been associated with severe disease, there are few reports of IE associated with GAS serotypes. Here, we report two cases of GAS endocarditis and review the associated literature.

Case presentations

Patient 1 was a previously healthy 14-year-old girl who developed bacteremia and disseminated intravascular coagulation secondary to left foot cellulitis. She was administered intravenous antibiotics. Two of three blood cultures grew Streptococcus pyogenes (T6 M6, emm6.104). Three days later, a new systolic ejection murmur was heard and echocardiography showed mitral regurgitation with mitral valve vegetation. Because of the resultant severity of the mitral regurgitation, she underwent mitral valve repair after 10 weeks of antibiotic treatment. Patient 2 was a 17-month old boy who presented with a fever. He had a history of spontaneous closure of a ventricular septal defect (VSD). He was started on intravenous antibiotics for possible bacteremia. Two consecutive blood cultures with an interval of more than 12 h grew S. pyogenes (T4 M4, emm4.0). Five days later, echocardiography showed vegetation on a membranous ventricular septal aneurysm. The patient responded well to antibiotics, and recovered fully with no complications.

Conclusions

Although both patients developed GAS endocarditis, patient 1 did not have any predisposing conditions for IE, and patient 2 had a only a low-risk predisposing condition, a VSD that had closed spontaneously at five months of age. We found twelve reports in the literature of GAS endocarditis with information on serotypes. All patients in these reports had GAS endocarditis caused by serotypes generally associated with milder infections, but no specific risk trends were identified. A greater accumulation of cases is necessary to more clearly elucidate the association between GAS IE and specific serotypes.
Literature
1.
go back to reference Hoyer A, Silberbach M. Infective endocarditis. Pediatr Rev. 2005;26:394–400. Hoyer A, Silberbach M. Infective endocarditis. Pediatr Rev. 2005;26:394–400.
2.
go back to reference Ferrieri P, Gewitz MH, Gerber MA, Newburger JW, Dajani AS, Shulman ST, et al. Unique features of infective endocarditis in childhood. Circulation. 2002;105:2115–27. Ferrieri P, Gewitz MH, Gerber MA, Newburger JW, Dajani AS, Shulman ST, et al. Unique features of infective endocarditis in childhood. Circulation. 2002;105:2115–27.
3.
go back to reference Baltimore RS, Gewitz M, Baddour LM, Beerman LB, Jackson MA, Lokhart PB, et al. Infective endocarditis in childhood: 2015 update. Circulation. 2015;132:1487–515. Baltimore RS, Gewitz M, Baddour LM, Beerman LB, Jackson MA, Lokhart PB, et al. Infective endocarditis in childhood: 2015 update. Circulation. 2015;132:1487–515.
4.
go back to reference Day MD, Gauvreau K, Shulman S, Newburger JW. Characteristics of children hospitalized with infective endocarditis. Circulation. 2009;119:865–70. Day MD, Gauvreau K, Shulman S, Newburger JW. Characteristics of children hospitalized with infective endocarditis. Circulation. 2009;119:865–70.
5.
go back to reference Pasquali SK, He X, Mohamad Z, McCrindle BW, Newburger JW, Li JS, et al. Trends in endocarditis hospitalizations at US childrens hospitals: Impact of the 2007 American Heart Association Antibiotic Prophylaxis Guidelines. Am Heart J. 2012. https://doi.org/10.1016/j.ahj. Pasquali SK, He X, Mohamad Z, McCrindle BW, Newburger JW, Li JS, et al. Trends in endocarditis hospitalizations at US childrens hospitals: Impact of the 2007 American Heart Association Antibiotic Prophylaxis Guidelines. Am Heart J. 2012. https://​doi.​org/​10.​1016/​j.​ahj.
8.
go back to reference Allen UD, Moore DL. Invasive group a streptococcal disease: management and chemoprophylaxis. Can J Infect Dis Med Microbiol. 2010;21:115–8.CrossRef Allen UD, Moore DL. Invasive group a streptococcal disease: management and chemoprophylaxis. Can J Infect Dis Med Microbiol. 2010;21:115–8.CrossRef
9.
go back to reference Nelson GE, Pondo T, Toews KA, Farley MM, Lindegren ML, Lynfield R, et al. Epidemiology of invasive Group A streptococcal infections in the United States, 2005–2012. Clin Infect Dis. 2016;63:478–86. Nelson GE, Pondo T, Toews KA, Farley MM, Lindegren ML, Lynfield R, et al. Epidemiology of invasive Group A streptococcal infections in the United States, 2005–2012. Clin Infect Dis. 2016;63:478–86.
10.
go back to reference Plainvert C, Doloy A, Loubinoux J, Lepoutre A, Collobert G, Touak G, et al. Invasive group a streptococcal infections in adults, France (2006-2010). Clin Microbiol Infect. 2012;18:702–10.CrossRef Plainvert C, Doloy A, Loubinoux J, Lepoutre A, Collobert G, Touak G, et al. Invasive group a streptococcal infections in adults, France (2006-2010). Clin Microbiol Infect. 2012;18:702–10.CrossRef
11.
go back to reference Maamary PG, Sanderson-Smith ML, Aziz RK, Hollands A, Cole JN, McKay FC, et al. Parameters governing invasive disease propensity of non-M1 serotype group a streptococci. J Innate Immun. 2010;2:596–606. Maamary PG, Sanderson-Smith ML, Aziz RK, Hollands A, Cole JN, McKay FC, et al. Parameters governing invasive disease propensity of non-M1 serotype group a streptococci. J Innate Immun. 2010;2:596–606.
12.
go back to reference Steer AC, Law I, Matatolu L, Beall BW, Carapetis JR. Global emm type distribution of group a streptococci: systematic review and implications for vaccine development. Lancet Infect Dis. 2009;9:611–6. Steer AC, Law I, Matatolu L, Beall BW, Carapetis JR. Global emm type distribution of group a streptococci: systematic review and implications for vaccine development. Lancet Infect Dis. 2009;9:611–6.
13.
go back to reference Rogers S, Commons R, Danchin MH, Selvaraj G, Kelpie L, Curtis N, et al. Strain prevalence, rather than innate virulence potential, is the major factor responsible for an increase in serious Group A streptococcus infections. J Infect Dis. 2007;195:1625–33. Rogers S, Commons R, Danchin MH, Selvaraj G, Kelpie L, Curtis N, et al. Strain prevalence, rather than innate virulence potential, is the major factor responsible for an increase in serious Group A streptococcus infections. J Infect Dis. 2007;195:1625–33.
14.
go back to reference Shea PR, Ewbank AL, Gonzalez-Lugo JH, Martagon-Rsado AJ, Martinez-Gutierrez JC, Rehman HA, et al. Group a streptococcus emm gene types in pharyngeal isolates, Ontario, Canada, 2002-2010. Emerg Infect Dis. 2011;17:2010–7. Shea PR, Ewbank AL, Gonzalez-Lugo JH, Martagon-Rsado AJ, Martinez-Gutierrez JC, Rehman HA, et al. Group a streptococcus emm gene types in pharyngeal isolates, Ontario, Canada, 2002-2010. Emerg Infect Dis. 2011;17:2010–7.
15.
go back to reference Liu VC, Stevenson JG, Smith AL. Group A streptococcus mural endocarditis. Pediatr Infect Dis J. 1992;11:1060–2.CrossRef Liu VC, Stevenson JG, Smith AL. Group A streptococcus mural endocarditis. Pediatr Infect Dis J. 1992;11:1060–2.CrossRef
16.
go back to reference Heeke AL, Blumberg HM, Perry JM, Weiss DS, Crispell EK, Satola SW, et al. Disseminated emm type 12 group a streptococcus and review of invasive disease. Am J Med Sci. 2015;350:429–31. Heeke AL, Blumberg HM, Perry JM, Weiss DS, Crispell EK, Satola SW, et al. Disseminated emm type 12 group a streptococcus and review of invasive disease. Am J Med Sci. 2015;350:429–31.
17.
go back to reference Shirai K, Doi S, Morita K, Tanaka A, Hirabayashi H, Ao K, et al. A post-operative case with atrioventricular septal defect suffering from group a β-hemolytic streptococcal pharyngitis-induced infective endocarditis. SHINZO. 2015;47:748–53. Shirai K, Doi S, Morita K, Tanaka A, Hirabayashi H, Ao K, et al. A post-operative case with atrioventricular septal defect suffering from group a β-hemolytic streptococcal pharyngitis-induced infective endocarditis. SHINZO. 2015;47:748–53.
18.
go back to reference Fernie-King BA, Seilly DJ, Willers C, Würzner R, Davies A, Lachmann PJ. Streptococcal inhibitor of complement (SIC) inhibits the membrane attack complex by preventing uptake of C567 onto cell membranes. Immunology. 2001;103:390–8. Fernie-King BA, Seilly DJ, Willers C, Würzner R, Davies A, Lachmann PJ. Streptococcal inhibitor of complement (SIC) inhibits the membrane attack complex by preventing uptake of C567 onto cell membranes. Immunology. 2001;103:390–8.
19.
go back to reference Pandiripally V, Gregory E, Cue D. Acquisition of regulators of complement activations by streptococcus pyogenes serotype M1. Infect Immun. 2002;70:6206–14. Pandiripally V, Gregory E, Cue D. Acquisition of regulators of complement activations by streptococcus pyogenes serotype M1. Infect Immun. 2002;70:6206–14.
20.
go back to reference Terao Y, Kawabata S, Kunitomo E, Murakami J, Nakagawa I, Hamada S. Fba, a novel fibronectin-binding protein from Streptococcus pyogenes, promotes bacterial entry into epithelial cells, and the fba gene is positively transcribed under the Mga regulator. Mol Microbiol. 2001;42:75–86. Terao Y, Kawabata S, Kunitomo E, Murakami J, Nakagawa I, Hamada S. Fba, a novel fibronectin-binding protein from Streptococcus pyogenes, promotes bacterial entry into epithelial cells, and the fba gene is positively transcribed under the Mga regulator. Mol Microbiol. 2001;42:75–86.
21.
go back to reference Wilson W, Taubert KA, Gewitz M, Lockhart PB, Baddour LM, Levison M, et al. Prevention of infective endocarditis: guidelines from the American Heart Association. A guideline from the American Heart Association Rheumatic Fever, Endocarditis, and Kawasaki Disease Committee, Council on Cardiovascular Disease in the Young, and the Council on Clinical Cardiology, Council on Cardiovascular Surgery and Anesthesia, and the Quality of Care and Outcomes Research Interdisciplinary Working Group. Circulation. 2007;116:1736–54. Wilson W, Taubert KA, Gewitz M, Lockhart PB, Baddour LM, Levison M, et al. Prevention of infective endocarditis: guidelines from the American Heart Association. A guideline from the American Heart Association Rheumatic Fever, Endocarditis, and Kawasaki Disease Committee, Council on Cardiovascular Disease in the Young, and the Council on Clinical Cardiology, Council on Cardiovascular Surgery and Anesthesia, and the Quality of Care and Outcomes Research Interdisciplinary Working Group. Circulation. 2007;116:1736–54.
22.
go back to reference Japan Science and Technology Information Aggregator, Electronic. Jstage.jst.gp.jp. Accessed 4 June 2017. Japan Science and Technology Information Aggregator, Electronic. Jstage.jst.gp.jp. Accessed 4 June 2017.
23.
go back to reference Centers for Disease Control and Prevention: Streptococcus Lab. cdc.gov. Accessed 25 June 2017. Centers for Disease Control and Prevention: Streptococcus Lab. cdc.gov. Accessed 25 June 2017.
24.
go back to reference McKay FC, McArthur JD, Sndaerson-Smith ML, Gardam S, Currie BJ, Sriprakash KS, et al. Plasminogen binding by group A streptococcal isolates from a region of hyperendemicity for streptococcal skin infections and a high incidence of invasive infection. Infections and Immunity. 2004;1:364–70. McKay FC, McArthur JD, Sndaerson-Smith ML, Gardam S, Currie BJ, Sriprakash KS, et al. Plasminogen binding by group A streptococcal isolates from a region of hyperendemicity for streptococcal skin infections and a high incidence of invasive infection. Infections and Immunity. 2004;1:364–70.
25.
go back to reference Erdem G, Mizumoto C, Esaki D, Abe L, Yamaga KM, Reddy V, et al. Streptococcal emm types in Hawaii: A region with high incidence of acute rheumatic fever. Pediatr Infect Dis J. 2009;1:13–6. Erdem G, Mizumoto C, Esaki D, Abe L, Yamaga KM, Reddy V, et al. Streptococcal emm types in Hawaii: A region with high incidence of acute rheumatic fever. Pediatr Infect Dis J. 2009;1:13–6.
26.
go back to reference Chen I, Kaufisi P, Erdem G. Emergence of erythromycin- and clindamycin-resistant Streptococcus pyogenes emm90 strains in Hawaii. J Clin Microbiol. 2011;1:439–41. Chen I, Kaufisi P, Erdem G. Emergence of erythromycin- and clindamycin-resistant Streptococcus pyogenes emm90 strains in Hawaii. J Clin Microbiol. 2011;1:439–41.
27.
go back to reference Knirsch W, Nadal D. Infective endocarditis in congenital heart disease. Eur J Pediatr. 2011;170:1111–27.CrossRef Knirsch W, Nadal D. Infective endocarditis in congenital heart disease. Eur J Pediatr. 2011;170:1111–27.CrossRef
28.
go back to reference Mohan UR, Walters S, Kroll JS. Endocarditis due to Group A β-Hemolytic streptococcus in children with potentially lethal sequelae: 2 cases and review. Clin Infect Dis. 2000;30:624–5. Mohan UR, Walters S, Kroll JS. Endocarditis due to Group A β-Hemolytic streptococcus in children with potentially lethal sequelae: 2 cases and review. Clin Infect Dis. 2000;30:624–5.
30.
go back to reference Oppegaard O, Mylvaganam H, Skrede S, Jordal S, Glambek M, Kittang BR. Clinical and molecular charactrestics of infective β-hemolytic streptococcal endocarditis. Diagn Microbiol Infect Dis. 2017;89:135–42. Oppegaard O, Mylvaganam H, Skrede S, Jordal S, Glambek M, Kittang BR. Clinical and molecular charactrestics of infective β-hemolytic streptococcal endocarditis. Diagn Microbiol Infect Dis. 2017;89:135–42.
Metadata
Title
Group A streptococcus endocarditis in children: 2 cases and a review of the literature
Authors
Nao Ogura
Kouki Tomari
Tomotada Takayama
Naoya Tonegawa
Teppei Okawa
Takashi Matsuoka
Mami Nakayashiro
Tsutomu Matsumora
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2019
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-019-3736-6

Other articles of this Issue 1/2019

BMC Infectious Diseases 1/2019 Go to the issue