Skip to main content
Top
Published in: BMC Infectious Diseases 1/2018

Open Access 01-12-2018 | Research article

Correlation between antifungal consumption and the distribution of Candida species in different hospital departments of a Lebanese medical Centre

Authors: Lyn Awad, Hani Tamim, Dania Abdallah, Mohammad Salameh, Anas Mugharbil, Tamima Jisr, Kamal Zahran, Nabila Droubi, Ahmad Ibrahim, Rima Moghnieh

Published in: BMC Infectious Diseases | Issue 1/2018

Login to get access

Abstract

Background

In recent years, there has been a significant increase in the incidence of fungal infections attributed to Candida species worldwide, with a major shift toward non-albicans Candida (NAC). In this study, we have described the distribution of Candida species among different hospital departments and calculated the antifungal consumption in our facility. We also correlated the consumption of certain antifungals and the prevalence of specific Candida species.

Methods

This was a retrospective review of all the Candida isolates recovered from the computerised microbiology laboratory database of Makassed General Hospital, a tertiary care centre in Beirut, Lebanon, between January 2010 and December 2015. Data on antifungal consumption between January 2008 and December 2015 were extracted from the hospital pharmacy electronic database. We used Spearman’s coefficient to find a correlation between Candida species distribution and antifungal consumption.

Results

Between 2008 and 2015, we observed that the highest antifungal consumption was in the haematology/oncology department (days of therapy/1000 patient days = 348.12 ± 85.41), and the lowest was in the obstetrics/gynaecology department (1.36 ± 0.47). In general, the difference in antifungal consumption among various departments was statistically significant (P < 0.0001). Overall, azoles were the most common first-line antifungals in our hospital. Echinocandins and amphotericin B were mostly prescribed in the haematology/oncology department. As for Candida species distribution, a total of 1377 non-duplicate isolates were identified between 2010 and 2015. A non-homologous distribution of albicans vs. non-albicans was noted among the different departments (P = 0.02). The most commonly isolated NAC was Candida glabrata, representing 14% of total Candida species and 59% of NAC. Candida famata (9% of NAC), Candida parapsilosis (3.6% of NAC) and Candida krusei (3% of NAC) were recovered unequally from the different departments. The total antifungal consumption correlated positively with the emergence of NAC. The use of azoles correlated positively with Candida glabrata, while amphotericin B formulations correlated negatively with it. None of these correlations reached statistical significance.

Conclusion

Different Candida species were unequally distributed among different hospital departments, and this correlated with consumption of antifungals in respective departments, highlighting the need for antifungal stewardship.
Literature
1.
go back to reference Deorukhkar SC, Saini S. Non albicans Candida species: a review of epidemiology, pathogenicity and antifungal resistance. Pravara Medical Review. 2015;7(3):7–15. Deorukhkar SC, Saini S. Non albicans Candida species: a review of epidemiology, pathogenicity and antifungal resistance. Pravara Medical Review. 2015;7(3):7–15.
2.
go back to reference Fadda ME, Podda GS, Pisano MB, Deplano M, Cosentino S. Prevalence of Candida species in different hospital wards and their susceptibility to antifungal agents: results of a three year survey. J Prev Med Hyg. 2008;49(2):69–74.PubMed Fadda ME, Podda GS, Pisano MB, Deplano M, Cosentino S. Prevalence of Candida species in different hospital wards and their susceptibility to antifungal agents: results of a three year survey. J Prev Med Hyg. 2008;49(2):69–74.PubMed
4.
go back to reference Yang CW, Barkham TM, Chan FY, Wang Y. Prevalence of Candida species, including Candida dubliniensis, in Singapore. J Clin Microbiol. 2003;41(1):472–4.CrossRef Yang CW, Barkham TM, Chan FY, Wang Y. Prevalence of Candida species, including Candida dubliniensis, in Singapore. J Clin Microbiol. 2003;41(1):472–4.CrossRef
7.
go back to reference Krcmery V, Kalavsky E. Antifungal drug discovery, six new molecules patented after 10 years of feast: why do we need new patented drugs apart from new strategies? Recent Pat Antiinfect Drug Discov. 2007;2(3):182–7.CrossRef Krcmery V, Kalavsky E. Antifungal drug discovery, six new molecules patented after 10 years of feast: why do we need new patented drugs apart from new strategies? Recent Pat Antiinfect Drug Discov. 2007;2(3):182–7.CrossRef
14.
go back to reference Von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP, Strobe Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. PLoS medicine. 2007;4(10):e296.CrossRef Von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP, Strobe Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. PLoS medicine. 2007;4(10):e296.CrossRef
15.
go back to reference Agha M, Agha SA, Sharafat S, Barakzai R, Zafar NU, Khanani MR, Mirza MA. API 20C: a reliable and rapid diagnostic tool for fungal infections. Gomal J Med Sci. 2012;10:237–40. Agha M, Agha SA, Sharafat S, Barakzai R, Zafar NU, Khanani MR, Mirza MA. API 20C: a reliable and rapid diagnostic tool for fungal infections. Gomal J Med Sci. 2012;10:237–40.
16.
go back to reference Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-Zeichner L, Reboli AC, Schuster MG, Vazquez JA, Walsh TJ, Zaoutis TE. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis. 2015;62(4):e1–50.PubMedPubMedCentral Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-Zeichner L, Reboli AC, Schuster MG, Vazquez JA, Walsh TJ, Zaoutis TE. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis. 2015;62(4):e1–50.PubMedPubMedCentral
17.
go back to reference Freifeld AG, Bow EJ, Sepkowitz KA, Boeckh MJ, Ito JI, Mullen CA, Raad II, Rolston KV, Young JA, Wingard JR. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the Infectious Diseases Society of America. Clin Infect Dis. 2011;52(4):e56–93.CrossRef Freifeld AG, Bow EJ, Sepkowitz KA, Boeckh MJ, Ito JI, Mullen CA, Raad II, Rolston KV, Young JA, Wingard JR. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the Infectious Diseases Society of America. Clin Infect Dis. 2011;52(4):e56–93.CrossRef
18.
go back to reference Lewis RE. Current concepts in antifungal pharmacology. Mayo Clin Proc. 2011;86(8):805–17.CrossRef Lewis RE. Current concepts in antifungal pharmacology. Mayo Clin Proc. 2011;86(8):805–17.CrossRef
20.
go back to reference WHO Collaborating Centre for Drug Statistics Methodology. Guidelines for ATC classification and DDD assignment, vol. 2012. Oslo: World Health Organization; 2013. p. 250. WHO Collaborating Centre for Drug Statistics Methodology. Guidelines for ATC classification and DDD assignment, vol. 2012. Oslo: World Health Organization; 2013. p. 250.
26.
go back to reference Dumartin C, Rogues AM, Heriteau F, Pefau M, Bertrand X, Jarno P, et al. Antifungal use in France: first multicentre survey in haematology, intensive care units and at hospital level in 2012.Presented at ESCMID in 2016. Dumartin C, Rogues AM, Heriteau F, Pefau M, Bertrand X, Jarno P, et al. Antifungal use in France: first multicentre survey in haematology, intensive care units and at hospital level in 2012.Presented at ESCMID in 2016.
28.
go back to reference European Centre for Disease Prevention and Control. Surveillance of antimicrobial consumption in Europe 2012. Stockholm: ECDC. p. 2014. European Centre for Disease Prevention and Control. Surveillance of antimicrobial consumption in Europe 2012. Stockholm: ECDC. p. 2014.
32.
go back to reference Lortholary O, Desnos-Ollivier M, Sitbon K, Fontanet A, Bretagne S, Dromer F, et al. Recent exposure to caspofungin or fluconazole influences the epidemiology of candidemia: a prospective multicenter study involving 2,441 patients. Antimicrob Agents Chemother. 2011;55(2):532–8. https://doi.org/10.1128/AAC.01128-10.CrossRefPubMed Lortholary O, Desnos-Ollivier M, Sitbon K, Fontanet A, Bretagne S, Dromer F, et al. Recent exposure to caspofungin or fluconazole influences the epidemiology of candidemia: a prospective multicenter study involving 2,441 patients. Antimicrob Agents Chemother. 2011;55(2):532–8. https://​doi.​org/​10.​1128/​AAC.​01128-10.CrossRefPubMed
34.
go back to reference Stone JA, Xu X, Winchell GA, Deutsch PJ, Pearson PG, Migoya EM, et al. Disposition of caspofungin: role of distribution in determining pharmacokinetics in plasma. Antimicrob Agents Chemother. 2004;48(3):815–23.CrossRef Stone JA, Xu X, Winchell GA, Deutsch PJ, Pearson PG, Migoya EM, et al. Disposition of caspofungin: role of distribution in determining pharmacokinetics in plasma. Antimicrob Agents Chemother. 2004;48(3):815–23.CrossRef
37.
Metadata
Title
Correlation between antifungal consumption and the distribution of Candida species in different hospital departments of a Lebanese medical Centre
Authors
Lyn Awad
Hani Tamim
Dania Abdallah
Mohammad Salameh
Anas Mugharbil
Tamima Jisr
Kamal Zahran
Nabila Droubi
Ahmad Ibrahim
Rima Moghnieh
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2018
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-018-3512-z

Other articles of this Issue 1/2018

BMC Infectious Diseases 1/2018 Go to the issue