Skip to main content
Top
Published in: BMC Infectious Diseases 1/2018

Open Access 01-12-2018 | Research article

Comparative effectiveness of anti-viral drugs with dual activity for treating hepatitis B and HIV co-infected patients: a network meta-analysis

Authors: Cho Naing, Yong Poovorawan, Kew Siang Tong

Published in: BMC Infectious Diseases | Issue 1/2018

Login to get access

Abstract

Background

There are randomized trials assessing a variety of antiviral drugs for hepatitis B virus (HBV), but the relative effectiveness of these drugs in the treatment of patients co-infected with human immunodeficiency virus (HIV) remains unclear. The objectives of the current study were to estimate and rank the relative effectiveness of antiviral drugs for treating HBV and HIV co-infected patients.

Methods

Randomized trials, assessing the efficacy of antiviral drugs for HBV and HIV co-infected patients were searched in health-related databases. The methodological quality of the included trials was evaluated using the Cochrane risk of bias tool. Main outcome in this meta-analysis study was the success of treatment by antivirals as determined by virologic response. We performed pairwise and network meta-analysis of these trials and assessed the quality of evidence using the GRADE approach.

Results

Seven randomized trials (329 participants) were included in this network meta-analysis study. A network geometry was formed with six treatment options including four antiviral drugs, adefovir (ADV), emtricitabine (FTC), lamivudine (LMV) and tenofovir disoproxil fumarate (TDF), combination treatment of TDF plus LMV, and placebo. The weighted percentage contributions of each comparison distributed fairly equally in the entire network of evidence. An assumption of consistency required for network meta-analysis was not violated (the global Wald test for inconsistency: Chi2(4) = 3.63, p = 0.46). The results of estimates showed no differences between the treatment regimens in terms of viral response for treating HBV and HIV co-infected patients, which spanned both benefit and harm (e.g. LMV vs TDF plus LMV: OR: 0.37, 95%CI: 0.06–2.41). Overall, the certainty of evidence was very low in all comparisons (e.g. LMV vs TDF plus LMV: 218 fewer per 1000,121 more to 602 fewer, very low certainty). Therefore, we remained uncertain to the true ranking of the antiviral treatments in HBV/ HIV co-infected patients.

Conclusions

The findings suggest that the evidence is insufficient to provide guidance to the relative effectiveness of currently available antiviral drugs with dual activity in treating co-infection of HBV/HIV. Well-designed, large clinical trials in this field to address other important outcomes from different epidemiological settings are recommended.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hilleman MR. Comparative biology and pathogenesis of AIDS and hepatitis B viruses: related but different. AIDS Res Hum Retrovir. 1994;10:1409–19.CrossRef Hilleman MR. Comparative biology and pathogenesis of AIDS and hepatitis B viruses: related but different. AIDS Res Hum Retrovir. 1994;10:1409–19.CrossRef
2.
go back to reference Thio C, Seaberg E, Skolasky R. HIV-1, hepatitis B virus, and risk of liver-related mortality in the multicenter AIDS cohort study (MACS). Lancet. 2002;360:1921–6.CrossRef Thio C, Seaberg E, Skolasky R. HIV-1, hepatitis B virus, and risk of liver-related mortality in the multicenter AIDS cohort study (MACS). Lancet. 2002;360:1921–6.CrossRef
3.
go back to reference Konopnicki D, Mocroft A, de Wit S, Antunes F, Ledergerber B, Katlama C, et al. Hepatitis B and HIV: prevalence, AIDS progression, response to highly active antiretroviral therapy and increased mortality in the EuroSIDA cohort. AIDS. 2005;19:593–601.CrossRef Konopnicki D, Mocroft A, de Wit S, Antunes F, Ledergerber B, Katlama C, et al. Hepatitis B and HIV: prevalence, AIDS progression, response to highly active antiretroviral therapy and increased mortality in the EuroSIDA cohort. AIDS. 2005;19:593–601.CrossRef
4.
go back to reference Alter MJ. Epidemiology of viral hepatitis and HIV co-infection. J Hepatol. 2006;44(1 Suppl):S6–9.CrossRef Alter MJ. Epidemiology of viral hepatitis and HIV co-infection. J Hepatol. 2006;44(1 Suppl):S6–9.CrossRef
5.
go back to reference Soriano V, Perelson AS, Zoulim F. Why are there different dynamics in the selection of drug resistance in HIV and hepatitis B and C viruses? J Antimicrob Chemother. 2008;62:1–4.CrossRef Soriano V, Perelson AS, Zoulim F. Why are there different dynamics in the selection of drug resistance in HIV and hepatitis B and C viruses? J Antimicrob Chemother. 2008;62:1–4.CrossRef
6.
go back to reference Thio CL. Hepatitis B and human immunodeficiency virus coinfection. Hepatology. 2009;49.CrossRef Thio CL. Hepatitis B and human immunodeficiency virus coinfection. Hepatology. 2009;49.CrossRef
7.
go back to reference Aggarwal R, Ranjan P. Preventing and treating hepatitis B infection. BMJ. 2004;329(7474):1080–6.CrossRef Aggarwal R, Ranjan P. Preventing and treating hepatitis B infection. BMJ. 2004;329(7474):1080–6.CrossRef
8.
go back to reference Benhamou Y, et al. Safety and efficacy of adefovir dipivoxil in patients co-infected with HIV-1 and lamivudine-resistant hepatitis B virus:an open-label pilot study. Lancet. 2001;358:718–23.CrossRef Benhamou Y, et al. Safety and efficacy of adefovir dipivoxil in patients co-infected with HIV-1 and lamivudine-resistant hepatitis B virus:an open-label pilot study. Lancet. 2001;358:718–23.CrossRef
10.
go back to reference Salanti G, Ades AE, Ioannidis JP. Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial. J Clin Epidemiol. 2011;64:163–71.CrossRef Salanti G, Ades AE, Ioannidis JP. Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial. J Clin Epidemiol. 2011;64:163–71.CrossRef
11.
go back to reference Salanti G. Indirect and mixed-treatment comparison, network, or multiple-treatments meta-analysis: many names, many benefits, many concerns for the next generation evidence synthesis tool. Res Synth Methods. 2012;3:80–97.CrossRef Salanti G. Indirect and mixed-treatment comparison, network, or multiple-treatments meta-analysis: many names, many benefits, many concerns for the next generation evidence synthesis tool. Res Synth Methods. 2012;3:80–97.CrossRef
12.
go back to reference Cornell JE. The PRISMA extension for network meta-analysis: bringing clarity and guidance to the reporting of systematic reviews incorporating network meta-analyses. Ann Intern Med. 2015;162:797–8.CrossRef Cornell JE. The PRISMA extension for network meta-analysis: bringing clarity and guidance to the reporting of systematic reviews incorporating network meta-analyses. Ann Intern Med. 2015;162:797–8.CrossRef
13.
go back to reference Higgins JPT, Green S (editors). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011. www.cochrane-handbook.org. Accessed 9 Mar 2018. Higgins JPT, Green S (editors). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011. www.​cochrane-handbook.​org. Accessed 9 Mar 2018.
14.
go back to reference Dore GJ, Cooper DA, Barrett C, Goh LE, Thakrar B, Atkins M, et al. Dual efficacy of lamivudine treatment in human immunodeficiency virus/hepatitis B virus-coinfected persons in a randomized, controlled study (CAESAR). The CAESAR Coordinating Committee. J Infect Dis. 1999;180:607–13.CrossRef Dore GJ, Cooper DA, Barrett C, Goh LE, Thakrar B, Atkins M, et al. Dual efficacy of lamivudine treatment in human immunodeficiency virus/hepatitis B virus-coinfected persons in a randomized, controlled study (CAESAR). The CAESAR Coordinating Committee. J Infect Dis. 1999;180:607–13.CrossRef
15.
go back to reference Avihingsanon A, Lewin SR, Kerr S, Chang JJ, Piyawat K, Napisianant N, et al. Efficacy of tenofovir disoproxil fumarate/emtricitabine compared with emtricitabine alone in antiretroviral-naive HIV-HBV coinfection in Thailand. Antivir Ther. 2010;15:917–22.CrossRef Avihingsanon A, Lewin SR, Kerr S, Chang JJ, Piyawat K, Napisianant N, et al. Efficacy of tenofovir disoproxil fumarate/emtricitabine compared with emtricitabine alone in antiretroviral-naive HIV-HBV coinfection in Thailand. Antivir Ther. 2010;15:917–22.CrossRef
16.
go back to reference Higgins JP, Altman DG, Gøtzsche PC, Juni P, Moher D, Oxman AD, et al. Cochrane Bias methods group; Cochrane Statistical Methods Group The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.CrossRef Higgins JP, Altman DG, Gøtzsche PC, Juni P, Moher D, Oxman AD, et al. Cochrane Bias methods group; Cochrane Statistical Methods Group The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.CrossRef
17.
go back to reference Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, Schünemann HJ, for the GRADE working group. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336:924–6.CrossRef Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, Schünemann HJ, for the GRADE working group. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336:924–6.CrossRef
18.
go back to reference Guyatt GH, Oxman AD, Montori V, et al. GRADE guidelines: 5. Rating the quality of evidence--publication bias. J Clin Epidemiol. 2011;64:1277–82.CrossRef Guyatt GH, Oxman AD, Montori V, et al. GRADE guidelines: 5. Rating the quality of evidence--publication bias. J Clin Epidemiol. 2011;64:1277–82.CrossRef
19.
go back to reference Shim S, Yoon B-H, Shin I-S, Bae J-M. Network meta-analysis: application and practice using Stata. Epidemiology and Health. 2017;39:e2017047.CrossRef Shim S, Yoon B-H, Shin I-S, Bae J-M. Network meta-analysis: application and practice using Stata. Epidemiology and Health. 2017;39:e2017047.CrossRef
20.
go back to reference Balshem H, Helfand M, Schunemann HJ, et al. GRADE guidelines: 3. Rating the quality of evidence. J Clin Epidemiol. 2011;64:401–6.CrossRef Balshem H, Helfand M, Schunemann HJ, et al. GRADE guidelines: 3. Rating the quality of evidence. J Clin Epidemiol. 2011;64:401–6.CrossRef
21.
go back to reference Chaimani A, Higgins JPT, Mavridis D, Spyridonos P, Salanti G. Graphical tools for network meta-analysis in STATA. PLoS One. 2013;8(10):e76654.CrossRef Chaimani A, Higgins JPT, Mavridis D, Spyridonos P, Salanti G. Graphical tools for network meta-analysis in STATA. PLoS One. 2013;8(10):e76654.CrossRef
22.
go back to reference White IR, Barrett JK, Jackson D, Higgins JP. Consistency and inconsistency in network meta-analysis: model estimation using multivariate meta-regression. Res Synth Methods. 2012;3:111–25.CrossRef White IR, Barrett JK, Jackson D, Higgins JP. Consistency and inconsistency in network meta-analysis: model estimation using multivariate meta-regression. Res Synth Methods. 2012;3:111–25.CrossRef
23.
go back to reference Brignardello-Petersen R, Bonner A, Alexander PE, Siemieniuk RA, Furukawa TA, Rochwerg B, GRADE Working Group. Advances in the GRADE approach to rate the certainty in estimates from a network meta-analysis. J Clin Epidemiol. 2018;93:36–44 [Corrigendum to “Advances in the GRADE approach to rate the certainty in estimates from a network meta-analysis” [J Clin Epidemiol 2018;93:36–44].CrossRef Brignardello-Petersen R, Bonner A, Alexander PE, Siemieniuk RA, Furukawa TA, Rochwerg B, GRADE Working Group. Advances in the GRADE approach to rate the certainty in estimates from a network meta-analysis. J Clin Epidemiol. 2018;93:36–44 [Corrigendum to “Advances in the GRADE approach to rate the certainty in estimates from a network meta-analysis” [J Clin Epidemiol 2018;93:36–44].CrossRef
24.
go back to reference Salanti G, Del Giovane C, Chaimani A, Caldwell DM, Higgins JP. Evaluating the quality of evidence from a network meta-analysis. PLoS One. 2014;9(7):e99682.CrossRef Salanti G, Del Giovane C, Chaimani A, Caldwell DM, Higgins JP. Evaluating the quality of evidence from a network meta-analysis. PLoS One. 2014;9(7):e99682.CrossRef
25.
go back to reference Dore GJ, Cooper DA, Pozniak AL, DeJesus E, Zhong L, Miller MD, et al. Efficacy of tenofovir disoproxil fumarate in antiretroviral therapy-naive and –experienced patients coinfected with HIV-1 and hepatitis B virus. J Infect Dis. 2004;189:1185–92.CrossRef Dore GJ, Cooper DA, Pozniak AL, DeJesus E, Zhong L, Miller MD, et al. Efficacy of tenofovir disoproxil fumarate in antiretroviral therapy-naive and –experienced patients coinfected with HIV-1 and hepatitis B virus. J Infect Dis. 2004;189:1185–92.CrossRef
26.
go back to reference Peters MG, Andersen J, Lynch P, Liu T, Alston-Smith B, Brosgart CL, et al. Randomized controlled study of tenofovir and adefovir in chronic hepatitis B virus and HIV infection: ACTG A5127. Hepatology. 2006;44:1110–6.CrossRef Peters MG, Andersen J, Lynch P, Liu T, Alston-Smith B, Brosgart CL, et al. Randomized controlled study of tenofovir and adefovir in chronic hepatitis B virus and HIV infection: ACTG A5127. Hepatology. 2006;44:1110–6.CrossRef
27.
go back to reference Matthews GV, Avihingsanon A, Lewin SR, Amin J, Rerknimitr R, Petcharapirat R, et al. A randomized trial of combination hepatitis B therapy in HIV/HBV coinfected antiretroviral naive individuals in Thailand. Hepatology. 2008;48:1062–9.CrossRef Matthews GV, Avihingsanon A, Lewin SR, Amin J, Rerknimitr R, Petcharapirat R, et al. A randomized trial of combination hepatitis B therapy in HIV/HBV coinfected antiretroviral naive individuals in Thailand. Hepatology. 2008;48:1062–9.CrossRef
28.
go back to reference Gu L, Han Y, Li Y, Zhu T, Song X, Huang Y, et al. Emergence of lamivudine-resistant hbv during antiretroviral therapy including lamivudine for patients coinfected with HIV and HBV in China. PLoS One. 2015;10:e0134539.CrossRef Gu L, Han Y, Li Y, Zhu T, Song X, Huang Y, et al. Emergence of lamivudine-resistant hbv during antiretroviral therapy including lamivudine for patients coinfected with HIV and HBV in China. PLoS One. 2015;10:e0134539.CrossRef
29.
go back to reference Wang L, Wiener J, Bulterys M, Wei X, Chen L, Liu W, et al. Hepatitis B virus (HBV) load response to 2 antiviral regimens, tenofovir/lamivudine and lamivudine, in HIV/HBV-coinfected pregnant women in Guangxi, China: the Tenofovir in pregnancy (TiP) study. J Infect Dis. 2016;214:1695–9.CrossRef Wang L, Wiener J, Bulterys M, Wei X, Chen L, Liu W, et al. Hepatitis B virus (HBV) load response to 2 antiviral regimens, tenofovir/lamivudine and lamivudine, in HIV/HBV-coinfected pregnant women in Guangxi, China: the Tenofovir in pregnancy (TiP) study. J Infect Dis. 2016;214:1695–9.CrossRef
30.
go back to reference Hoffmann CJ, Charalambous S, Martin DJ, Innes C, Churchyard GJ, Chaisson RE, et al. Hepatitis B virus infection and response to antiretroviral therapy (ART) in a south African ART program. Clin Infect Dis. 2008;47:1479–85.CrossRef Hoffmann CJ, Charalambous S, Martin DJ, Innes C, Churchyard GJ, Chaisson RE, et al. Hepatitis B virus infection and response to antiretroviral therapy (ART) in a south African ART program. Clin Infect Dis. 2008;47:1479–85.CrossRef
31.
go back to reference Gutierrez S, Guillemi S, Jahnke N, Montessori V, Harrigan PR, et al. Tenofovir-based rescue therapy for advanced liver disease in 6 patients coinfected with HIV and hepatitis B virus and receiving lamivudine. Clin Infect Dis. 2008;46:e28–30.CrossRef Gutierrez S, Guillemi S, Jahnke N, Montessori V, Harrigan PR, et al. Tenofovir-based rescue therapy for advanced liver disease in 6 patients coinfected with HIV and hepatitis B virus and receiving lamivudine. Clin Infect Dis. 2008;46:e28–30.CrossRef
32.
go back to reference Lacombe K, Gozlan J, Boyd A, Boelle PY, Bonnard P, Malean JM, et al. Comparison of the antiviral activity of adefovir and tenofovir on hepatitis B virus in HIVHBV-coinfected patients. Antivir Ther. 2008;13:705–13.PubMedPubMedCentral Lacombe K, Gozlan J, Boyd A, Boelle PY, Bonnard P, Malean JM, et al. Comparison of the antiviral activity of adefovir and tenofovir on hepatitis B virus in HIVHBV-coinfected patients. Antivir Ther. 2008;13:705–13.PubMedPubMedCentral
33.
go back to reference Nuesch R, Ananworanich J, Srasuebkul P, Chetchotisakd P, Prasithsirikul W, et al. Interruptions of tenofovir/emtricitabine-based antiretroviral therapy in patients with HIV/hepatitis B virus co-infection. AIDS. 2008;22:152–4.CrossRef Nuesch R, Ananworanich J, Srasuebkul P, Chetchotisakd P, Prasithsirikul W, et al. Interruptions of tenofovir/emtricitabine-based antiretroviral therapy in patients with HIV/hepatitis B virus co-infection. AIDS. 2008;22:152–4.CrossRef
34.
go back to reference Alvarez-Uria G, Ratcliffe L, Vilar J. Long-term outcome of tenofovir disoproxil fumarate use against hepatitis B in an HIV-coinfected cohort. HIV Med. 2009;10:269–73.CrossRef Alvarez-Uria G, Ratcliffe L, Vilar J. Long-term outcome of tenofovir disoproxil fumarate use against hepatitis B in an HIV-coinfected cohort. HIV Med. 2009;10:269–73.CrossRef
35.
go back to reference Idoko J, Meloni S, Muazu M, Nimzing L, Badung B, Hawkins C, et al. Impact of hepatitis B virus infection on human immunodeficiency virus response to antiretroviral therapy in Nigeria. Clin Infect Dis. 2009;49:1268–73.CrossRef Idoko J, Meloni S, Muazu M, Nimzing L, Badung B, Hawkins C, et al. Impact of hepatitis B virus infection on human immunodeficiency virus response to antiretroviral therapy in Nigeria. Clin Infect Dis. 2009;49:1268–73.CrossRef
36.
go back to reference Engell CA, Pham VP, Holzman RS, Aberg JA. Virologic outcome of using tenofovir/emtricitabine to treat hepatitis b in hiv-coinfected patients. ISRN Gastroenterol. 2011;405390. Engell CA, Pham VP, Holzman RS, Aberg JA. Virologic outcome of using tenofovir/emtricitabine to treat hepatitis b in hiv-coinfected patients. ISRN Gastroenterol. 2011;405390.
37.
go back to reference Matthews GV, Manzini P, Hu Z, Khabo P, Maja P, Matchaba G, et al. Impact of lamivudine on HIV and hepatitis B virus-related outcomes in HIV/hepatitis B virus individuals in a randomized clinical trial of antiretroviral therapy in southern Africa. AIDS. 2011;25:1727–35.CrossRef Matthews GV, Manzini P, Hu Z, Khabo P, Maja P, Matchaba G, et al. Impact of lamivudine on HIV and hepatitis B virus-related outcomes in HIV/hepatitis B virus individuals in a randomized clinical trial of antiretroviral therapy in southern Africa. AIDS. 2011;25:1727–35.CrossRef
38.
go back to reference Nelson M, Amaya G, Clumeck N, da Cunha CA, Jayaweera D, Junod P, et al. Efficacy and safety of rilpivirine in treatment-naive, HIV-1-infected patients with hepatitis B virus/hepatitis C virus coinfection enrolled in the phase III randomized, double-blind ECHO and THRIVE trials. J Antimicrob Chemother. 2012;67:2020–8.CrossRef Nelson M, Amaya G, Clumeck N, da Cunha CA, Jayaweera D, Junod P, et al. Efficacy and safety of rilpivirine in treatment-naive, HIV-1-infected patients with hepatitis B virus/hepatitis C virus coinfection enrolled in the phase III randomized, double-blind ECHO and THRIVE trials. J Antimicrob Chemother. 2012;67:2020–8.CrossRef
39.
go back to reference Matthews GV, Ali RJ, Avihingsanon A, Amin J, Hammond R, Petcharapirat P, et al. Quantitative HBsAg and HBeAg predict hepatitis b seroconversion after initiation of HAARTt in HIV-HBV coinfected individuals. PLoS One. 2013;8(4):e61297.CrossRef Matthews GV, Ali RJ, Avihingsanon A, Amin J, Hammond R, Petcharapirat P, et al. Quantitative HBsAg and HBeAg predict hepatitis b seroconversion after initiation of HAARTt in HIV-HBV coinfected individuals. PLoS One. 2013;8(4):e61297.CrossRef
40.
go back to reference Kang M, Hollabaugh K, Pham V, Koletar SL, Wu K, Smurzynski M, et al. Virologic and serologic outcomes of mono versus dual HBV therapy and characterization of HIV/HBV coinfection in a US cohort. J Acquir Immune Defic Syndr. 2014;66:172–80.PubMedPubMedCentral Kang M, Hollabaugh K, Pham V, Koletar SL, Wu K, Smurzynski M, et al. Virologic and serologic outcomes of mono versus dual HBV therapy and characterization of HIV/HBV coinfection in a US cohort. J Acquir Immune Defic Syndr. 2014;66:172–80.PubMedPubMedCentral
41.
go back to reference Miailhes P, Maynard-Muet M, Lebossé F, Carrat F, Bouix C, Lascoux-Combe C, et al. Role of a 48-week pegylated interferon therapy in hepatitis B e antigen positive HIV-co-infected patients on cART including tenofovir: EMVIPEG study. J Hepatol. 2014;61:761–9.CrossRef Miailhes P, Maynard-Muet M, Lebossé F, Carrat F, Bouix C, Lascoux-Combe C, et al. Role of a 48-week pegylated interferon therapy in hepatitis B e antigen positive HIV-co-infected patients on cART including tenofovir: EMVIPEG study. J Hepatol. 2014;61:761–9.CrossRef
42.
go back to reference Yu S, Zhou Q, Zhao XM, Yuan M, Wang CT, Cheng XG, et al. Comparison of the antiviral effects of different nucleos(t)ide analogues in chinese patients with chronic hepatitis B: a head-to-head study. Saudi J Gastroenterol. 2014;20:350–5.CrossRef Yu S, Zhou Q, Zhao XM, Yuan M, Wang CT, Cheng XG, et al. Comparison of the antiviral effects of different nucleos(t)ide analogues in chinese patients with chronic hepatitis B: a head-to-head study. Saudi J Gastroenterol. 2014;20:350–5.CrossRef
43.
go back to reference Lee T, Núnez M. Longer duration of HBV-active antiretroviral therapy is linked to favorable virological outcome in HIV-HBV co-infected patients. HIV Clin Trials. 2009;10:153–9.CrossRef Lee T, Núnez M. Longer duration of HBV-active antiretroviral therapy is linked to favorable virological outcome in HIV-HBV co-infected patients. HIV Clin Trials. 2009;10:153–9.CrossRef
44.
go back to reference Li Y, Xie J, Han Y, Wang H, Zhu T, Wang N, et al. Lamivudine monotherapy-based cart is efficacious for HBV treatment in hiv/HBV coinfection when baseline HBV DNA <20,000 IU/mL. J Acquir Immune Defic Syndr. 2016;72:39–45.CrossRef Li Y, Xie J, Han Y, Wang H, Zhu T, Wang N, et al. Lamivudine monotherapy-based cart is efficacious for HBV treatment in hiv/HBV coinfection when baseline HBV DNA <20,000 IU/mL. J Acquir Immune Defic Syndr. 2016;72:39–45.CrossRef
45.
go back to reference Mbuagbaw L, Rochwerg B, Jaeschke R, Heels-Andsell D, Alhazzani W, Thabane L, et al. Approaches to interpreting and choosing the best treatments in network meta-analyses. Systematic Reviews. 2017;6:79.CrossRef Mbuagbaw L, Rochwerg B, Jaeschke R, Heels-Andsell D, Alhazzani W, Thabane L, et al. Approaches to interpreting and choosing the best treatments in network meta-analyses. Systematic Reviews. 2017;6:79.CrossRef
46.
go back to reference Lim Y-S. Management of Antiviral Resistance in chronic hepatitis B. Gut and Liver. 2017;11:189–95.CrossRef Lim Y-S. Management of Antiviral Resistance in chronic hepatitis B. Gut and Liver. 2017;11:189–95.CrossRef
47.
go back to reference Kitrinos KM, Corsa A, Liu Y, Flaherty J, Snow-Lampart A, Marcellin P, et al. No detectable resistance to tenofovir disoproxil fumarate after 6 years of therapy in patients with chronic hepatitis B. Hepatology. 2014;59:434–42.CrossRef Kitrinos KM, Corsa A, Liu Y, Flaherty J, Snow-Lampart A, Marcellin P, et al. No detectable resistance to tenofovir disoproxil fumarate after 6 years of therapy in patients with chronic hepatitis B. Hepatology. 2014;59:434–42.CrossRef
48.
49.
go back to reference Heathcote J, Gane EJ, deMan RA, Sing C, Sievert W, Mauss S, et al. Two year tenofovir disoproxil fumarate (TDF) treatment and adefovir dipivoxil (ADV) switch data en HBeAg-positive patients with chronic hepatitis B (Study 103), preliminary analysis. Hepatology. 2008;48:376A. Heathcote J, Gane EJ, deMan RA, Sing C, Sievert W, Mauss S, et al. Two year tenofovir disoproxil fumarate (TDF) treatment and adefovir dipivoxil (ADV) switch data en HBeAg-positive patients with chronic hepatitis B (Study 103), preliminary analysis. Hepatology. 2008;48:376A.
50.
go back to reference Woo G, Tomlinson G, Nishikawa Y, Kowgier M, Sherman M, et al. Tenofovir and entecavir are the most effective antiviral agents for chronic hepatitis B: a systematic review and Bayesian meta-analyses. Gastroenterology. 2010;139:1218–29.CrossRef Woo G, Tomlinson G, Nishikawa Y, Kowgier M, Sherman M, et al. Tenofovir and entecavir are the most effective antiviral agents for chronic hepatitis B: a systematic review and Bayesian meta-analyses. Gastroenterology. 2010;139:1218–29.CrossRef
51.
go back to reference Price H, Dunn D, Pillay D, Bani-Sadr F, de Vries-Sluijs T, Jain MK, et al. Suppression of HBV by tenofovir in HBV/HIV Coinfected patients: a systematic review and meta-analysis. PLoS One. 2010;8:e68152.CrossRef Price H, Dunn D, Pillay D, Bani-Sadr F, de Vries-Sluijs T, Jain MK, et al. Suppression of HBV by tenofovir in HBV/HIV Coinfected patients: a systematic review and meta-analysis. PLoS One. 2010;8:e68152.CrossRef
52.
go back to reference Schweitzer A, Horn J, Mikolajczyk RT, Krause G, Ott JJ. Estimations of worldwide prevalence of chronic hepatitis B virus infection: a systematic review of data published between 1965 and 2013. Lancet. 2015;386:1546–55.CrossRef Schweitzer A, Horn J, Mikolajczyk RT, Krause G, Ott JJ. Estimations of worldwide prevalence of chronic hepatitis B virus infection: a systematic review of data published between 1965 and 2013. Lancet. 2015;386:1546–55.CrossRef
54.
go back to reference Kau A, Vermehren J, Sarrazin C. Treatment predictors of a sustained virologic response in hepatitis B and C. J Hepatol. 2008;49:634–51.CrossRef Kau A, Vermehren J, Sarrazin C. Treatment predictors of a sustained virologic response in hepatitis B and C. J Hepatol. 2008;49:634–51.CrossRef
Metadata
Title
Comparative effectiveness of anti-viral drugs with dual activity for treating hepatitis B and HIV co-infected patients: a network meta-analysis
Authors
Cho Naing
Yong Poovorawan
Kew Siang Tong
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2018
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-018-3506-x

Other articles of this Issue 1/2018

BMC Infectious Diseases 1/2018 Go to the issue