Skip to main content
Top
Published in: BMC Infectious Diseases 1/2018

Open Access 01-12-2018 | Research article

Urogenital pathogens, associated with Trichomonas vaginalis, among pregnant women in Kilifi, Kenya: a nested case-control study

Authors: Simon C. Masha, Piet Cools, Patrick Descheemaeker, Marijke Reynders, Eduard J. Sanders, Mario Vaneechoutte

Published in: BMC Infectious Diseases | Issue 1/2018

Login to get access

Abstract

Background

Screening of curable sexually transmitted infections is frequently oriented towards the diagnosis of chlamydia, gonorrhea, syphilis and trichomoniasis, whereas other pathogens, sometimes associated with similar urogenital syndromes, remain undiagnosed and/or untreated. Some of these pathogens are associated with adverse pregnancy outcomes.

Methods

In a nested case-control study, vaginal swabs from 79 pregnant women, i.e., 28 T. vaginalis-positive (cases) and 51 T. vaginalis-negative (controls), were screened by quantitative PCR for Adenovirus 1 and 2, Cytomegalovirus, Herpes Simplex Virus 1 and 2, Chlamydia trachomatis, Escherichia coli, Haemophilus ducreyi, Mycoplasma genitalium, M. hominis, candidatus M. girerdii, Neisseria gonorrhoeae, Streptococcus agalactiae, Treponema pallidum, Ureaplasma parvum, U. urealyticum, and Candida albicans. Additionally, we determined whether women with pathogens highly associated with T. vaginalis had distinct clinical signs and symptoms compared to women with T. vaginalis mono-infection.

Results

M. hominis was independently associated with T. vaginalis (adjusted odds ratio = 6.8, 95% CI: 2.3–19.8). Moreover, M. genitalium and Ca M. girerdii were exclusively detected in women with T. vaginalis (P = 0.002 and P = 0.001), respectively. Four of the six women co-infected with T. vaginalis and Ca M. girerdii complained of vaginal itching, compared to only 4 out of the 22 women infected with T. vaginalis without Ca M. girerdii (P = 0.020).

Conclusion

We confirm M. hominis as a correlate of T. vaginalis in our population, and the exclusive association of both M. genitalium and Ca. M. girerdii with T. vaginalis. Screening and treatment of these pathogens should be considered.
Appendix
Available only for authorised users
Literature
1.
go back to reference Newman L, Rowley J, Vander Hoorn S, et al. Global estimates of the prevalence and incidence of four curable sexually transmitted infections in 2012 based on systematic review and global reporting. PLoS One. 2015;10:e0143304.CrossRef Newman L, Rowley J, Vander Hoorn S, et al. Global estimates of the prevalence and incidence of four curable sexually transmitted infections in 2012 based on systematic review and global reporting. PLoS One. 2015;10:e0143304.CrossRef
2.
go back to reference Vos T, Barber RM, Bell B, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990 -2013: a systematic analysis for the global burden of disease study 2013. Lancet. 2015;386:743–800.CrossRef Vos T, Barber RM, Bell B, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990 -2013: a systematic analysis for the global burden of disease study 2013. Lancet. 2015;386:743–800.CrossRef
3.
go back to reference McClelland RS, Sangare L, Hassan WM, et al. Infection with Trichomonas vaginalis increases the risk of HIV-1 acquisition. J Infect Dis. 2007;195:698–702.CrossRef McClelland RS, Sangare L, Hassan WM, et al. Infection with Trichomonas vaginalis increases the risk of HIV-1 acquisition. J Infect Dis. 2007;195:698–702.CrossRef
4.
go back to reference Petrin D, Delgaty K, Bhatt R, et al. Clinical and microbiological aspects of Trichomonas vaginalis. Clin Microbiol Rev. 1998;11:300–17.CrossRef Petrin D, Delgaty K, Bhatt R, et al. Clinical and microbiological aspects of Trichomonas vaginalis. Clin Microbiol Rev. 1998;11:300–17.CrossRef
5.
go back to reference Fichorova R, Fraga J, Rappelli P, et al. Trichomonas vaginalis infection in symbiosis with Trichomonasvirus and Mycoplasma. Res Microbiol. 2017;168:882–91.CrossRef Fichorova R, Fraga J, Rappelli P, et al. Trichomonas vaginalis infection in symbiosis with Trichomonasvirus and Mycoplasma. Res Microbiol. 2017;168:882–91.CrossRef
6.
go back to reference Azargoon A, Darvishzadeh S. Association of bacterial vaginosis, Trichomonas vaginalis, and vaginal acidity with outcome of pregnancy. Arch Iranian Med. 2006;9:213–7. Azargoon A, Darvishzadeh S. Association of bacterial vaginosis, Trichomonas vaginalis, and vaginal acidity with outcome of pregnancy. Arch Iranian Med. 2006;9:213–7.
7.
go back to reference Donders GGG, Ruban K, Bellen G, et al. Mycoplasma/Ureaplasma infection in pregnancy: to screen or not to screen. J Perinat Med. 2017;45(5):505–15.CrossRef Donders GGG, Ruban K, Bellen G, et al. Mycoplasma/Ureaplasma infection in pregnancy: to screen or not to screen. J Perinat Med. 2017;45(5):505–15.CrossRef
8.
go back to reference Masha SC, Wahome E, Vaneechoutte M, et al. High prevalence of curable sexually transmitted infections among pregnant women in a rural county hospital in Kilifi, Kenya. PloS One. 2017;12:e0175166.CrossRef Masha SC, Wahome E, Vaneechoutte M, et al. High prevalence of curable sexually transmitted infections among pregnant women in a rural county hospital in Kilifi, Kenya. PloS One. 2017;12:e0175166.CrossRef
9.
go back to reference Steensels D, Reynders M, Descheemaeker P, et al. Clinical evaluation of a multi-parameter customized respiratory TaqMan® array card compared to conventional methods in immunocompromised patients. J Clin Vir. 2015;72:36–41.CrossRef Steensels D, Reynders M, Descheemaeker P, et al. Clinical evaluation of a multi-parameter customized respiratory TaqMan® array card compared to conventional methods in immunocompromised patients. J Clin Vir. 2015;72:36–41.CrossRef
10.
go back to reference Duyvejonck H, Cools P, Decruyenaere J, et al. Validation of High Resolution Melting Analysis (HRM) of the amplified ITS2 region for the detection and identification of yeasts from clinical samples: Comparison with culture and MALDI-TOF based identification. PLoS ONE. 2015;10:e0132149 Erratum in: PLoS One 2015; 10:e0139501.CrossRef Duyvejonck H, Cools P, Decruyenaere J, et al. Validation of High Resolution Melting Analysis (HRM) of the amplified ITS2 region for the detection and identification of yeasts from clinical samples: Comparison with culture and MALDI-TOF based identification. PLoS ONE. 2015;10:e0132149 Erratum in: PLoS One 2015; 10:e0139501.CrossRef
11.
go back to reference Cools P, Jespers V, Hardy L, et al. A multi-country cross-sectional study of vaginal carriage of group B streptococci (GBS) and Escherichia coli in resource-poor settings: prevalences and risk factors. PLoS One. 2016;11:e0148052.CrossRef Cools P, Jespers V, Hardy L, et al. A multi-country cross-sectional study of vaginal carriage of group B streptococci (GBS) and Escherichia coli in resource-poor settings: prevalences and risk factors. PLoS One. 2016;11:e0148052.CrossRef
12.
go back to reference El Aila NA, Cools P, Deschaght P, et al. Strong correspondence of the vaginal and rectal load of group B streptococci in pregnant women. J Clin Gynecol Obst. 2013;2:61–7. El Aila NA, Cools P, Deschaght P, et al. Strong correspondence of the vaginal and rectal load of group B streptococci in pregnant women. J Clin Gynecol Obst. 2013;2:61–7.
14.
go back to reference Crucitti T, Abdellati S, Van Dyck E, Buve A. Molecular typing of the actin gene of Trichomonas vaginalis isolates by PCR-restriction fragment length polymorphism. Clin Microbiol Infect. 2008;14:844–52.CrossRef Crucitti T, Abdellati S, Van Dyck E, Buve A. Molecular typing of the actin gene of Trichomonas vaginalis isolates by PCR-restriction fragment length polymorphism. Clin Microbiol Infect. 2008;14:844–52.CrossRef
15.
go back to reference Becker DD, dos Santos O, Frasson AP, et al. High rates of double-stranded RNA viruses and Mycoplasma hominis in Trichomonas vaginalis clinical isolates in South Brazil. Infect Genet Evol. 2015;34:181–7.CrossRef Becker DD, dos Santos O, Frasson AP, et al. High rates of double-stranded RNA viruses and Mycoplasma hominis in Trichomonas vaginalis clinical isolates in South Brazil. Infect Genet Evol. 2015;34:181–7.CrossRef
16.
go back to reference Xiao JC, Xie LF, Fang SL, et al. Symbiosis of Mycoplasma hominis in Trichomonas vaginalis may link metronidazole resistance in vitro. Parasit Res. 2006;100:123–30.CrossRef Xiao JC, Xie LF, Fang SL, et al. Symbiosis of Mycoplasma hominis in Trichomonas vaginalis may link metronidazole resistance in vitro. Parasit Res. 2006;100:123–30.CrossRef
17.
go back to reference Rappelli P, Addis MF, Carta F, et al. Mycoplasma hominis parasitism of Trichomonas vaginalis. Lancet. 1998;352:1286.CrossRef Rappelli P, Addis MF, Carta F, et al. Mycoplasma hominis parasitism of Trichomonas vaginalis. Lancet. 1998;352:1286.CrossRef
18.
go back to reference Van Belkum A, Van der Meijden WI, Verbrugh HA, et al. A clinical study on the association of Trichomonas vaginalis and Mycoplasma hominis infections in women attending a sexually transmitted disease (STD) outpatient clinic. Immun Med Microbiol. 2001;32:27–32.CrossRef Van Belkum A, Van der Meijden WI, Verbrugh HA, et al. A clinical study on the association of Trichomonas vaginalis and Mycoplasma hominis infections in women attending a sexually transmitted disease (STD) outpatient clinic. Immun Med Microbiol. 2001;32:27–32.CrossRef
19.
go back to reference Coorevits L, Traen A, Binge L, et al. Macrolide resistance in mycoplasma genitalium from female sex workers in Belgium. J Glob Antimicrob Resist. 2018;12:149–52.CrossRef Coorevits L, Traen A, Binge L, et al. Macrolide resistance in mycoplasma genitalium from female sex workers in Belgium. J Glob Antimicrob Resist. 2018;12:149–52.CrossRef
20.
go back to reference Fettweis JM, Serrano MG, Huang B, et al. An emerging Mycoplasma associated with trichomoniasis, vaginal infection and disease. PloS One. 2014;9:e110943.CrossRef Fettweis JM, Serrano MG, Huang B, et al. An emerging Mycoplasma associated with trichomoniasis, vaginal infection and disease. PloS One. 2014;9:e110943.CrossRef
21.
go back to reference Martin DH, Zozaya M, Lillis RA, et al. Unique vaginal microbiota that includes an unknown Mycoplasma-like organism is associated with Trichomonas vaginalis infection. J Infect Dis. 2013;207:1922–31.CrossRef Martin DH, Zozaya M, Lillis RA, et al. Unique vaginal microbiota that includes an unknown Mycoplasma-like organism is associated with Trichomonas vaginalis infection. J Infect Dis. 2013;207:1922–31.CrossRef
22.
go back to reference Costello EK, Sun CL, Carlisle EM, et al. Candidatus Mycoplasma girerdii replicates, diversifies, and co-occurs with Trichomonas vaginalis in the oral cavity of a premature infant. Sci Rep. 2017;7:3764.CrossRef Costello EK, Sun CL, Carlisle EM, et al. Candidatus Mycoplasma girerdii replicates, diversifies, and co-occurs with Trichomonas vaginalis in the oral cavity of a premature infant. Sci Rep. 2017;7:3764.CrossRef
23.
go back to reference Taylor-Robinson D. Mollicutes in vaginal microbiology: Mycoplasma hominis, Ureaplasma urealyticum, Ureaplasma parvum and Mycoplasma genitalium. Res Microbiol. 2017;168:875–81.CrossRef Taylor-Robinson D. Mollicutes in vaginal microbiology: Mycoplasma hominis, Ureaplasma urealyticum, Ureaplasma parvum and Mycoplasma genitalium. Res Microbiol. 2017;168:875–81.CrossRef
24.
go back to reference Payne MS, Ireland DJ, Watts R, et al. Ureaplasma parvum genotype, combined vaginal colonisation with Candida albicans, and spontaneous preterm birth in an Australian cohort of pregnant women. BMC Pregnancy Childbirth. 2016;16:312.CrossRef Payne MS, Ireland DJ, Watts R, et al. Ureaplasma parvum genotype, combined vaginal colonisation with Candida albicans, and spontaneous preterm birth in an Australian cohort of pregnant women. BMC Pregnancy Childbirth. 2016;16:312.CrossRef
25.
go back to reference Donders GG, Ruban K, Bellen G, et al. Mycoplasma/Ureaplasma infection in pregnancy: to screen or not to screen. J Perinatal Med. 2017;45:505–15.CrossRef Donders GG, Ruban K, Bellen G, et al. Mycoplasma/Ureaplasma infection in pregnancy: to screen or not to screen. J Perinatal Med. 2017;45:505–15.CrossRef
26.
go back to reference Gatski M, Martin DH, Clark RA, et al. Co-occurrence of Trichomonas vaginalis and bacterial vaginosis among HIV-positive women. Sex Transm Dis. 2011;38:163–6.CrossRef Gatski M, Martin DH, Clark RA, et al. Co-occurrence of Trichomonas vaginalis and bacterial vaginosis among HIV-positive women. Sex Transm Dis. 2011;38:163–6.CrossRef
Metadata
Title
Urogenital pathogens, associated with Trichomonas vaginalis, among pregnant women in Kilifi, Kenya: a nested case-control study
Authors
Simon C. Masha
Piet Cools
Patrick Descheemaeker
Marijke Reynders
Eduard J. Sanders
Mario Vaneechoutte
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2018
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-018-3455-4

Other articles of this Issue 1/2018

BMC Infectious Diseases 1/2018 Go to the issue