Skip to main content
Top
Published in: BMC Infectious Diseases 1/2018

Open Access 01-12-2018 | Research article

Fomite-mediated transmission as a sufficient pathway: a comparative analysis across three viral pathogens

Authors: Alicia N.M. Kraay, Michael A.L. Hayashi, Nancy Hernandez-Ceron, Ian H. Spicknall, Marisa C. Eisenberg, Rafael Meza, Joseph N.S. Eisenberg

Published in: BMC Infectious Diseases | Issue 1/2018

Login to get access

Abstract

Background

Fomite mediated transmission can be an important pathway causing significant disease transmission in number of settings such as schools, daycare centers, and long-term care facilities. The importance of these pathways relative to other transmission pathways such as direct person-person or airborne will depend on the characteristics of the particular pathogen and the venue in which transmission occurs. Here we analyze fomite mediated transmission through a comparative analysis across multiple pathogens and venues.

Methods

We developed and analyzed a compartmental model that explicitly accounts for fomite transmission by including pathogen transfer between hands and surfaces. We consider two sub-types of fomite-mediated transmission: direct fomite (e.g., shedding onto fomites) and hand-fomite (e.g., shedding onto hands and then contacting fomites). We use this model to examine three pathogens with distinct environmental characteristics (influenza, rhinovirus, and norovirus) in four venue types. To parameterize the model for each pathogen we conducted a thorough literature search.

Results

Based on parameter estimates from the literature the reproductive number (\(\mathcal {R}_{0}\)) for the fomite route for rhinovirus and norovirus is greater than 1 in nearly all venues considered, suggesting that this route can sustain transmission. For influenza, on the other hand, \(\mathcal {R}_{0}\) for the fomite route is smaller suggesting many conditions in which the pathway may not sustain transmission. Additionally, the direct fomite route is more relevant than the hand-fomite route for influenza and rhinovirus, compared to norovirus. The relative importance of the hand-fomite vs. direct fomite route for norovirus is strongly dependent on the fraction of pathogens initially shed to hands. Sensitivity analysis stresses the need for accurate measurements of environmental inactivation rates, transfer efficiencies, and pathogen shedding.

Conclusions

Fomite-mediated transmission is an important pathway for the three pathogens examined. The effectiveness of environmental interventions differs significantly both by pathogen and venue. While fomite-based interventions may be able to lower \(\mathcal {R}_{0}\) for fomites below 1 and interrupt transmission, rhinovirus and norovirus are so infectious (\(\mathcal {R}_{0}>>1\)) that single environmental interventions are unlikely to interrupt fomite transmission for these pathogens.
Appendix
Available only for authorised users
Literature
1.
go back to reference Fankhauser RL, Monroe SS, Noel JS, Humphrey CD, Bresee JS, Parashar UD, Ando T, Glass RI. Epidemiologic and Molecular Trends of “Norwalk-like Viruse” Associated with Outbreaks of gastroenteritis in the united states. J Infect Dis. 2002; 186(1):1–7. https://doi.org/10.1086/341085.CrossRef Fankhauser RL, Monroe SS, Noel JS, Humphrey CD, Bresee JS, Parashar UD, Ando T, Glass RI. Epidemiologic and Molecular Trends of “Norwalk-like Viruse” Associated with Outbreaks of gastroenteritis in the united states. J Infect Dis. 2002; 186(1):1–7. https://​doi.​org/​10.​1086/​341085.CrossRef
3.
go back to reference Gwaltney JM, Hendley JO. Transmission of experimental rhinovirus infection by contaminated surfaces. Am J Epidemiol. 1982; 116(5):828–33.CrossRef Gwaltney JM, Hendley JO. Transmission of experimental rhinovirus infection by contaminated surfaces. Am J Epidemiol. 1982; 116(5):828–33.CrossRef
4.
go back to reference Winther B, McCue K, Ashe K, Rubino J, O HJ. Rhinovirus contamination of surfaces in homes of adults with natural colds: transfer of virus to fingertips during normal daily activities. J Med Virol. 2011; 83(5):906–9.CrossRef Winther B, McCue K, Ashe K, Rubino J, O HJ. Rhinovirus contamination of surfaces in homes of adults with natural colds: transfer of virus to fingertips during normal daily activities. J Med Virol. 2011; 83(5):906–9.CrossRef
7.
go back to reference Eisenberg JN, Brookhart MA, Rice G, Brown M, Colford Jr JM. Disease transmission models for public health decision making: analysis of epidemic and endemic conditions caused by waterborne pathogens. Environ Health Perspect. 2002; 110(8):783.CrossRef Eisenberg JN, Brookhart MA, Rice G, Brown M, Colford Jr JM. Disease transmission models for public health decision making: analysis of epidemic and endemic conditions caused by waterborne pathogens. Environ Health Perspect. 2002; 110(8):783.CrossRef
10.
go back to reference Noakes CJ, Beggs CB, Sleigh PA, Kerr KG. Modelling the transmission of airborne infections in enclosed spaces. Epidemiol Infect. 2006; 134:1082–91.CrossRef Noakes CJ, Beggs CB, Sleigh PA, Kerr KG. Modelling the transmission of airborne infections in enclosed spaces. Epidemiol Infect. 2006; 134:1082–91.CrossRef
17.
go back to reference Brouwer AF, Weir MH, Eisenberg MC, Meza R, S EJN. Dose-response relationships for environmentally mediated infectious disease transmission models. PLoS Comput Biol. 2017; 13(4):1005481.CrossRef Brouwer AF, Weir MH, Eisenberg MC, Meza R, S EJN. Dose-response relationships for environmentally mediated infectious disease transmission models. PLoS Comput Biol. 2017; 13(4):1005481.CrossRef
19.
go back to reference Van den Driessche P, Watmough J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci. 2002; 180(1):29–48.CrossRef Van den Driessche P, Watmough J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci. 2002; 180(1):29–48.CrossRef
25.
go back to reference Granados A, Peci A, McGeer A, Gubbay JB. Influenza and rhinovirus viral load and disease severity in upper respiratory tract infections. J Clin Virol. 2017; 86:14–19.CrossRef Granados A, Peci A, McGeer A, Gubbay JB. Influenza and rhinovirus viral load and disease severity in upper respiratory tract infections. J Clin Virol. 2017; 86:14–19.CrossRef
26.
go back to reference Wang B, Russell ML, Fonseca K, Earn DJD, Horsman G, VanCaeseele P, Chokani K, Vooght M, Babiuk L, Walter SD, Loeb M. Predictors of influenza a molecular viral shedding in hutterite communities. Influenza Other Respir Viruses. 2017; 11(3):254–62.CrossRef Wang B, Russell ML, Fonseca K, Earn DJD, Horsman G, VanCaeseele P, Chokani K, Vooght M, Babiuk L, Walter SD, Loeb M. Predictors of influenza a molecular viral shedding in hutterite communities. Influenza Other Respir Viruses. 2017; 11(3):254–62.CrossRef
27.
go back to reference Chan MCW, Sung JJY, Lam RKY, Chan PKS, Lee NLS, Lai RWM, Leung WK. Fecal viral load and norovirus-associated gastroenteritis. Emerg Infect Dis. 2006; 12(8):1278–80.CrossRef Chan MCW, Sung JJY, Lam RKY, Chan PKS, Lee NLS, Lai RWM, Leung WK. Fecal viral load and norovirus-associated gastroenteritis. Emerg Infect Dis. 2006; 12(8):1278–80.CrossRef
28.
go back to reference Lei H, Li Y, Xiao S, Lin CH, Norris SL, Wei D, Hu Z, Ji S. Routes of transmission of influenza a H1N1, SARS CoV, and norovirus in air cabin: comparative analyses. Indoor Air. 2018; 28:394–403.CrossRef Lei H, Li Y, Xiao S, Lin CH, Norris SL, Wei D, Hu Z, Ji S. Routes of transmission of influenza a H1N1, SARS CoV, and norovirus in air cabin: comparative analyses. Indoor Air. 2018; 28:394–403.CrossRef
29.
30.
go back to reference Mackintosh CA, Hoffman PN. An extended model of transfer of micro-organisms via the hands: differences between organisms and the effect of alcohol disinfection. J Hyg Camb. 1984; 92:345–55.CrossRef Mackintosh CA, Hoffman PN. An extended model of transfer of micro-organisms via the hands: differences between organisms and the effect of alcohol disinfection. J Hyg Camb. 1984; 92:345–55.CrossRef
31.
go back to reference Ibfelt T, Engelund EH, Permin A, Madsen JS, Schultz AC, Anderson LP. Presence of pathogenic bacteria and viruses in the daycare environment. J Environ Health. 2012; 78(3):24–9. Ibfelt T, Engelund EH, Permin A, Madsen JS, Schultz AC, Anderson LP. Presence of pathogenic bacteria and viruses in the daycare environment. J Environ Health. 2012; 78(3):24–9.
32.
go back to reference Xu C, Fu Y, Zhu W, Zhang H, Pan L, Xu H, Wang Y, Wang W, Sun Q. An outbreak of acute norovirus gastroenteritis in a boarding school in Shanghai: a retrospective cohort study. BMC Public Health. 2014; 14:1092.CrossRef Xu C, Fu Y, Zhu W, Zhang H, Pan L, Xu H, Wang Y, Wang W, Sun Q. An outbreak of acute norovirus gastroenteritis in a boarding school in Shanghai: a retrospective cohort study. BMC Public Health. 2014; 14:1092.CrossRef
34.
go back to reference Otter JA, Yezli S, Salkeld JAG, French GL. Evidence that contaminated surfaces contribute to the transmission of hospital pathogens and an overview of strategies to address contaminated surfaces in hospital settings. Am J Infect Control. 2013; 41(5):6–11.CrossRef Otter JA, Yezli S, Salkeld JAG, French GL. Evidence that contaminated surfaces contribute to the transmission of hospital pathogens and an overview of strategies to address contaminated surfaces in hospital settings. Am J Infect Control. 2013; 41(5):6–11.CrossRef
35.
go back to reference Weinstein RA, Hota B. Contamination, disinfection, and cross-colonization: are hospital surfaces reservoirs for nosocomial infection. Clin Infect Dis. 2004; 39(8):1182–9.CrossRef Weinstein RA, Hota B. Contamination, disinfection, and cross-colonization: are hospital surfaces reservoirs for nosocomial infection. Clin Infect Dis. 2004; 39(8):1182–9.CrossRef
36.
go back to reference Vynnycky E, White R. An Introduction to Infectious Disease Modelling. Great Clarendon St Oxford OX2 6DP: Oxford University Press; 2010. Vynnycky E, White R. An Introduction to Infectious Disease Modelling. Great Clarendon St Oxford OX2 6DP: Oxford University Press; 2010.
38.
go back to reference Hayden FG, Fritz R, Lobo MC, Alvord W, Strober W, Straus SE. Local and systemic cytokine responses during experimental human influenza A virus infection. Relation to symptom formation and host defense. J Clin Investig. 1998; 101(3):643–9. https://doi.org/10.1172/JCI1355.CrossRef Hayden FG, Fritz R, Lobo MC, Alvord W, Strober W, Straus SE. Local and systemic cytokine responses during experimental human influenza A virus infection. Relation to symptom formation and host defense. J Clin Investig. 1998; 101(3):643–9. https://​doi.​org/​10.​1172/​JCI1355.CrossRef
39.
go back to reference Suess T, Buchholz U, Dupke S, Grunow R, an der Heiden M, Heider A, Biere B, Schweiger B, Haas W, Krause G, on Behalf of the Robert Koch Institute Shedding Investigation Group. Shedding and Transmission of Novel Influenza Virus A/H1n1 Infection in Households–Germany, 2009. Am J Epidemiol. 2010; 171(11):1157–64. https://doi.org/10.1093/aje/kwq071.CrossRef Suess T, Buchholz U, Dupke S, Grunow R, an der Heiden M, Heider A, Biere B, Schweiger B, Haas W, Krause G, on Behalf of the Robert Koch Institute Shedding Investigation Group. Shedding and Transmission of Novel Influenza Virus A/H1n1 Infection in Households–Germany, 2009. Am J Epidemiol. 2010; 171(11):1157–64. https://​doi.​org/​10.​1093/​aje/​kwq071.CrossRef
40.
go back to reference Suess T, Remschmidt C, Schink SB, Schweiger B, Heider A, Milde J, Nitsche A, Schroeder K, Doellinger J, Braun C, Haas W, Krause G, Buchholz U. Comparison of Shedding Characteristics of Seasonal Influenza Virus (Sub)Types and Influenza A(H1n1)pdm09; Germany, 2007–2011. PLoS ONE. 2012; 7(12):51653. https://doi.org/10.1371/journal.pone.0051653.CrossRef Suess T, Remschmidt C, Schink SB, Schweiger B, Heider A, Milde J, Nitsche A, Schroeder K, Doellinger J, Braun C, Haas W, Krause G, Buchholz U. Comparison of Shedding Characteristics of Seasonal Influenza Virus (Sub)Types and Influenza A(H1n1)pdm09; Germany, 2007–2011. PLoS ONE. 2012; 7(12):51653. https://​doi.​org/​10.​1371/​journal.​pone.​0051653.CrossRef
43.
go back to reference Lee N, Chan PK, Hui DS, Rainer TH, Wong E, Choi K-W, Lui GC, Wong BC, Wong RY, Lam W-Y, et al.Viral loads and duration of viral shedding in adult patients hospitalized with influenza. J Infect Dis. 2009; 200(4):492–500.CrossRef Lee N, Chan PK, Hui DS, Rainer TH, Wong E, Choi K-W, Lui GC, Wong BC, Wong RY, Lam W-Y, et al.Viral loads and duration of viral shedding in adult patients hospitalized with influenza. J Infect Dis. 2009; 200(4):492–500.CrossRef
44.
go back to reference Hall CB, Douglas Jr RG, Geiman JM, Meagher MP. Viral shedding patterns of children with influenza b infection. J Infect Dis. 1979; 140(4):610–3.CrossRef Hall CB, Douglas Jr RG, Geiman JM, Meagher MP. Viral shedding patterns of children with influenza b infection. J Infect Dis. 1979; 140(4):610–3.CrossRef
45.
go back to reference Lau LL, Cowling BJ, Fang VJ, Chan K-H, Lau EH, Lipsitch M, Cheng CK, Houck PM, Uyeki TM, Peiris JM, et al.Viral shedding and clinical illness in naturally acquired influenza virus infections. J Infect Dis. 2010; 201(10):1509–16.CrossRef Lau LL, Cowling BJ, Fang VJ, Chan K-H, Lau EH, Lipsitch M, Cheng CK, Houck PM, Uyeki TM, Peiris JM, et al.Viral shedding and clinical illness in naturally acquired influenza virus infections. J Infect Dis. 2010; 201(10):1509–16.CrossRef
46.
go back to reference Hendley JO, Gwaltney JM. Viral titers in nasal lining fluid compared to viral titers in nasal washes during experimental rhinovirus infection. J Clin Virol. 2004; 30(4):326–8.CrossRef Hendley JO, Gwaltney JM. Viral titers in nasal lining fluid compared to viral titers in nasal washes during experimental rhinovirus infection. J Clin Virol. 2004; 30(4):326–8.CrossRef
47.
go back to reference Douglas Jr RG, Cate TR, Gerone PJ, Couch RB. Quantitative rhinovirus shedding patterns in volunteers 1, 2. Am Rev Respir Dis. 1966; 94(2):159–67. Douglas Jr RG, Cate TR, Gerone PJ, Couch RB. Quantitative rhinovirus shedding patterns in volunteers 1, 2. Am Rev Respir Dis. 1966; 94(2):159–67.
48.
go back to reference Teunis P, Sukhrie F, Vennema H, Bogerman J, Beersma M, Koopmans M. Shedding of norovirus in symptomatic and asymptomatic infections. Epidemiol Infect. 2015; 143(8):1710–7.CrossRef Teunis P, Sukhrie F, Vennema H, Bogerman J, Beersma M, Koopmans M. Shedding of norovirus in symptomatic and asymptomatic infections. Epidemiol Infect. 2015; 143(8):1710–7.CrossRef
49.
go back to reference Lee N, Chan MC, Wong B, Choi K, Sin W, Lui G, Chan PK, Lai RW, Cockram C, Sung JJ, et al.Fecal viral concentration and diarrhea in norovirus gastroenteritis. Emerg Infect Dis. 2007; 13(9):1399.CrossRef Lee N, Chan MC, Wong B, Choi K, Sin W, Lui G, Chan PK, Lai RW, Cockram C, Sung JJ, et al.Fecal viral concentration and diarrhea in norovirus gastroenteritis. Emerg Infect Dis. 2007; 13(9):1399.CrossRef
50.
go back to reference Bean B, Moore BM, Sterner B, Peterson LR, Gerding DN, Balfour HH. Survival of influenza viruses on environmental surfaces. J Infect Dis. 1982; 146(1):47–51.CrossRef Bean B, Moore BM, Sterner B, Peterson LR, Gerding DN, Balfour HH. Survival of influenza viruses on environmental surfaces. J Infect Dis. 1982; 146(1):47–51.CrossRef
55.
go back to reference Ansari SA, Springthorpe VS, Sattar SA, Rivard S, Rahman M. Potential role of hands in the spread of respiratory viral infections: studies with human parainfluenza virus 3 and rhinovirus 14. J Clin Microbiol. 1991; 29(10):2115–9.PubMedPubMedCentral Ansari SA, Springthorpe VS, Sattar SA, Rivard S, Rahman M. Potential role of hands in the spread of respiratory viral infections: studies with human parainfluenza virus 3 and rhinovirus 14. J Clin Microbiol. 1991; 29(10):2115–9.PubMedPubMedCentral
57.
go back to reference Mattison K, Karthikeyan K, Abebe M, Malik N, Sattar SA, Farber JM, Bidawid S. Survival of calicivirus in foods and on surfaces: experiments with feline calicivirus as a surrogate for norovirus. J Food Prot. 2007; 70(2):500–3.CrossRef Mattison K, Karthikeyan K, Abebe M, Malik N, Sattar SA, Farber JM, Bidawid S. Survival of calicivirus in foods and on surfaces: experiments with feline calicivirus as a surrogate for norovirus. J Food Prot. 2007; 70(2):500–3.CrossRef
58.
go back to reference Rusin P, Maxwell S, Gerba C. Comparative surface-to-hand and fingertip-to-mouth transfer efficiency of gram-positive bacteria, gram-negative bacteria, and phage. J Appl Microbiol. 2002; 93(4):585–92.CrossRef Rusin P, Maxwell S, Gerba C. Comparative surface-to-hand and fingertip-to-mouth transfer efficiency of gram-positive bacteria, gram-negative bacteria, and phage. J Appl Microbiol. 2002; 93(4):585–92.CrossRef
59.
go back to reference Lopez GU. Transfer of microorganisms from fomites to hands and risk assessment of contaminated and disinfected surfaces. PhD thesis, The University of Arizona. 2013. Lopez GU. Transfer of microorganisms from fomites to hands and risk assessment of contaminated and disinfected surfaces. PhD thesis, The University of Arizona. 2013.
60.
go back to reference Pancic F, Carpentier DC, Came PE. Role of Infectious Secretions in the Transmission of Rhinovirus. J Clin Microbiol. 1980; 12(4):567–71.PubMedPubMedCentral Pancic F, Carpentier DC, Came PE. Role of Infectious Secretions in the Transmission of Rhinovirus. J Clin Microbiol. 1980; 12(4):567–71.PubMedPubMedCentral
61.
go back to reference Reed SE. An investigation of the possible transmission of Rhinovirus colds through indirect contact. J Hyg. 1975; 75(2):249–58.CrossRef Reed SE. An investigation of the possible transmission of Rhinovirus colds through indirect contact. J Hyg. 1975; 75(2):249–58.CrossRef
62.
go back to reference Bidawid S, Malik N, Adegbunrin O, Sattar SA, Farber JM. Norovirus cross-contamination during food handling and interruption of virus transfer by hand antisepsis: experiments with feline calicivirus as a surrogate. J Food Prot. 2004; 67(1):103–9.CrossRef Bidawid S, Malik N, Adegbunrin O, Sattar SA, Farber JM. Norovirus cross-contamination during food handling and interruption of virus transfer by hand antisepsis: experiments with feline calicivirus as a surrogate. J Food Prot. 2004; 67(1):103–9.CrossRef
Metadata
Title
Fomite-mediated transmission as a sufficient pathway: a comparative analysis across three viral pathogens
Authors
Alicia N.M. Kraay
Michael A.L. Hayashi
Nancy Hernandez-Ceron
Ian H. Spicknall
Marisa C. Eisenberg
Rafael Meza
Joseph N.S. Eisenberg
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2018
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-018-3425-x

Other articles of this Issue 1/2018

BMC Infectious Diseases 1/2018 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.