Skip to main content
Top
Published in: BMC Infectious Diseases 1/2018

Open Access 01-12-2018 | Research article

Exploring bacterial growth and recolonization after preoperative hand disinfection and surgery between operating room nurses and non-health care workers: a pilot study

Authors: Camilla Wistrand, Bo Söderquist, Karin Falk-Brynhildsen, Ulrica Nilsson

Published in: BMC Infectious Diseases | Issue 1/2018

Login to get access

Abstract

Background

To prevent cross infection the surgical team perform preoperative hand disinfection before dressed in surgical gowns and gloves. Preoperative hand disinfection does not make hands sterile and the surgical glove cuff end has been regarded as a weak link, since it is not a liquid-proof interface. The aims were to investigate if there were differences in bacterial growth and recolonization of hands between operating room nurses and non-health care workers as well as to investigate if bacterial growth existed at the surgical glove cuff end during surgery.

Methods

This pilot project was conducted as an exploratory comparative clinical trial. Bacterial cultures were taken from the glove and gown interface and at three sites of the hands of 12 operating room nurses and 13 non-health care workers controls directly after preoperative hand disinfection and again after wearing surgical gloves and gowns. Colony forming units were analysed with Mann-Whitney U test and Wilcoxon Sign Ranks test comparing repeated measurements. Categorical variables were evaluated with chi-square test or Fisher’s exact test.

Results

Operating room nurses compared to non-health care workers had significant higher bacterial growth at two of three culture sites after surgical hand disinfection. Both groups had higher recolonization at one of the three culture sites after wearing surgical gloves. There were no differences between the groups in total colony forming units, that is, all sampling sites. Five out of 12 of the operating room nurses had bacterial growth at the glove cuff end and of those, four had the same bacteria at the glove cuff end as found in the cultures from the hands. Bacteria isolated from the glove cuff were P. acnes, S. warneri, S. epidermidis and Micrococcus species, the CFU/mL ranged from 10 to 40.

Conclusions

There were differences in bacterial growth and re-colonization between the groups but this was inconclusive. However, bacterial growth exists at the glove cuff and gown interface, further investigation in larger study is needed, to build on these promising, but preliminary, findings.

Trial registration

Trial registration was performed prospectively at Research web (FOU in Sweden, 117,971) 14/01/2013, and retrospectively at ClinicalTrials.gov (NCT02359708). 01/27/2015.
Literature
1.
go back to reference Friberg O, Dahlin LG, Levin LA, Magnusson A, Granfeldt H, Kallman J, et al. Cost effectiveness of local collagen-gentamicin as prophylaxis for sternal wound infections in different risk groups. Scand Cardiovasc J. 2006;40(2):117–25.CrossRef Friberg O, Dahlin LG, Levin LA, Magnusson A, Granfeldt H, Kallman J, et al. Cost effectiveness of local collagen-gentamicin as prophylaxis for sternal wound infections in different risk groups. Scand Cardiovasc J. 2006;40(2):117–25.CrossRef
2.
go back to reference Graf K, Ott E, Vonberg RP, Kuehn C, Haverich A, Chaberny IF. Economic aspects of deep sternal wound infections. Eur J Cardiothorac Surg. 2010;37(4):893–6.CrossRef Graf K, Ott E, Vonberg RP, Kuehn C, Haverich A, Chaberny IF. Economic aspects of deep sternal wound infections. Eur J Cardiothorac Surg. 2010;37(4):893–6.CrossRef
3.
go back to reference Broex EC, van Asselt AD, Bruggeman CA, van Tiel FH. Surgical site infections: how high are the costs? J Hosp Infect. 2009;72(3):193–201.CrossRef Broex EC, van Asselt AD, Bruggeman CA, van Tiel FH. Surgical site infections: how high are the costs? J Hosp Infect. 2009;72(3):193–201.CrossRef
4.
go back to reference Weber WP, Zwahlen M, Reck S, Feder-Mengus C, Misteli H, Rosenthal R, et al. Economic burden of surgical site infections at a European university hospital. Infect Control Hosp Epidemiol. 2008;29(7):623–9.CrossRef Weber WP, Zwahlen M, Reck S, Feder-Mengus C, Misteli H, Rosenthal R, et al. Economic burden of surgical site infections at a European university hospital. Infect Control Hosp Epidemiol. 2008;29(7):623–9.CrossRef
5.
go back to reference Bitkover CY, Marcusson E, Ransjo U. Spread of coagulase-negative staphylococci during cardiac operations in a modern operating room. Ann Thorac Surg. 2000;69(4):1110–5.CrossRef Bitkover CY, Marcusson E, Ransjo U. Spread of coagulase-negative staphylococci during cardiac operations in a modern operating room. Ann Thorac Surg. 2000;69(4):1110–5.CrossRef
6.
go back to reference Gardlund B, Bitkover CY, Vaage J. Postoperative mediastinitis in cardiac surgery - microbiology and pathogenesis. Eur J Cardiothorac Surg. 2002;21(5):825–30.CrossRef Gardlund B, Bitkover CY, Vaage J. Postoperative mediastinitis in cardiac surgery - microbiology and pathogenesis. Eur J Cardiothorac Surg. 2002;21(5):825–30.CrossRef
7.
go back to reference Tegnell A, Aren C, Ohman L. Coagulase-negative staphylococci and sternal infections after cardiac operation. Ann Thorac Surg. 2000;69(4):1104–9.CrossRef Tegnell A, Aren C, Ohman L. Coagulase-negative staphylococci and sternal infections after cardiac operation. Ann Thorac Surg. 2000;69(4):1104–9.CrossRef
8.
go back to reference Ridderstolpe L, Gill H, Granfeldt H, Ahlfeldt H, Rutberg H. Superficial and deep sternal wound complications: incidence, risk factors and mortality. Eur J Cardiothorac Surg. 2001;20(6):1168–75.CrossRef Ridderstolpe L, Gill H, Granfeldt H, Ahlfeldt H, Rutberg H. Superficial and deep sternal wound complications: incidence, risk factors and mortality. Eur J Cardiothorac Surg. 2001;20(6):1168–75.CrossRef
9.
go back to reference Graf K, Sohr D, Haverich A, Kuhn C, Gastmeier P, Chaberny IF. Decrease of deep sternal surgical site infection rates after cardiac surgery by a comprehensive infection control program. Interact Cardiovasc Thorac Surg. 2009;9(2):282–6.CrossRef Graf K, Sohr D, Haverich A, Kuhn C, Gastmeier P, Chaberny IF. Decrease of deep sternal surgical site infection rates after cardiac surgery by a comprehensive infection control program. Interact Cardiovasc Thorac Surg. 2009;9(2):282–6.CrossRef
10.
go back to reference Mangram AJ, Horan TC, Pearson ML, Silver LC, Jarvis WR. Guideline for prevention of surgical site infection, 1999. Hospital infection control practices advisory committee. Infect Control Hosp Epidemiol. 1999;20(4):250–78 quiz 79-80.CrossRef Mangram AJ, Horan TC, Pearson ML, Silver LC, Jarvis WR. Guideline for prevention of surgical site infection, 1999. Hospital infection control practices advisory committee. Infect Control Hosp Epidemiol. 1999;20(4):250–78 quiz 79-80.CrossRef
11.
go back to reference Tanner J, Parkinson H. Double gloving to reduce surgical cross-infection. Cochrane Database Syst Rev. 2006;3:Cd003087. Tanner J, Parkinson H. Double gloving to reduce surgical cross-infection. Cochrane Database Syst Rev. 2006;3:Cd003087.
12.
go back to reference Berg GA, Kirk AJ, Bain WH. Punctured surgical gloves and bacterial re-colonisation of hands during open heart surgery: implications for prosthetic valve replacement. Br J Clin Pract. 1987;41(9):903–6.PubMed Berg GA, Kirk AJ, Bain WH. Punctured surgical gloves and bacterial re-colonisation of hands during open heart surgery: implications for prosthetic valve replacement. Br J Clin Pract. 1987;41(9):903–6.PubMed
13.
go back to reference Edlich RF, Wind TC, Hill LG, Thacker JG. Creating another barrier to the transmission of bloodborne operative infections with a new glove gauntlet. J Long-Term Eff Med Implants. 2003;13(2):97–101.CrossRef Edlich RF, Wind TC, Hill LG, Thacker JG. Creating another barrier to the transmission of bloodborne operative infections with a new glove gauntlet. J Long-Term Eff Med Implants. 2003;13(2):97–101.CrossRef
14.
go back to reference Meyer KK, Beck WC. Gown-glove interface: a possible solution to the danger zone. Infect Control Hosp Epidemiol. 1995;16(8):488–90.CrossRef Meyer KK, Beck WC. Gown-glove interface: a possible solution to the danger zone. Infect Control Hosp Epidemiol. 1995;16(8):488–90.CrossRef
15.
go back to reference Larson EL, Hughes CA, Pyrek JD, Sparks SM, Cagatay EU, Bartkus JM. Changes in bacterial flora associated with skin damage on hands of health care personnel. Am J Infect Control. 1998;26(5):513–21.CrossRef Larson EL, Hughes CA, Pyrek JD, Sparks SM, Cagatay EU, Bartkus JM. Changes in bacterial flora associated with skin damage on hands of health care personnel. Am J Infect Control. 1998;26(5):513–21.CrossRef
16.
go back to reference de Almeida e Borges LF, Silva BL, Gontijo Filho PP. Hand washing: changes in the skin flora. Am J Infect Control. 2007;35(6):417–20.CrossRef de Almeida e Borges LF, Silva BL, Gontijo Filho PP. Hand washing: changes in the skin flora. Am J Infect Control. 2007;35(6):417–20.CrossRef
17.
go back to reference Larson E, Girard R, Pessoa-Silva CL, Boyce J, Donaldson L, Pittet D. Skin reactions related to hand hygiene and selection of hand hygiene products. Am J Infect Control. 2006;34(10):627–35.CrossRef Larson E, Girard R, Pessoa-Silva CL, Boyce J, Donaldson L, Pittet D. Skin reactions related to hand hygiene and selection of hand hygiene products. Am J Infect Control. 2006;34(10):627–35.CrossRef
18.
go back to reference Kownatzki E. Hand hygiene and skin health. J Hosp Infect. 2003;55(4):239–45.CrossRef Kownatzki E. Hand hygiene and skin health. J Hosp Infect. 2003;55(4):239–45.CrossRef
19.
go back to reference Larson E, Leyden JJ, McGinley KJ, Grove GL, Talbot GH. Physiologic and microbiologic changes in skin related to frequent handwashing. Infect Control. 1986;7(2):59–63.CrossRef Larson E, Leyden JJ, McGinley KJ, Grove GL, Talbot GH. Physiologic and microbiologic changes in skin related to frequent handwashing. Infect Control. 1986;7(2):59–63.CrossRef
20.
go back to reference World Medical Association. World medical association declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310(20):2191–4.CrossRef World Medical Association. World medical association declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310(20):2191–4.CrossRef
21.
go back to reference Falk-Brynhildsen K, Friberg O, Soderquist B, Nilsson UG. Bacterial colonization of the skin following aseptic preoperative preparation and impact of the use of plastic adhesive drapes. Biol Res Nurs. 2013;15(2):242–8.CrossRef Falk-Brynhildsen K, Friberg O, Soderquist B, Nilsson UG. Bacterial colonization of the skin following aseptic preoperative preparation and impact of the use of plastic adhesive drapes. Biol Res Nurs. 2013;15(2):242–8.CrossRef
23.
go back to reference Eklund AM, Ojajarvi J, Laitinen K, Valtonen M, Werkkala KA. Glove punctures and postoperative skin flora of hands in cardiac surgery. Ann Thorac Surg. 2002;74(1):149–53.CrossRef Eklund AM, Ojajarvi J, Laitinen K, Valtonen M, Werkkala KA. Glove punctures and postoperative skin flora of hands in cardiac surgery. Ann Thorac Surg. 2002;74(1):149–53.CrossRef
24.
go back to reference Tanner J, Swarbrook S, Stuart J. Surgical hand antisepsis to reduce surgical site infection. Cochrane Database Syst Rev. 2008;1:Cd004288. Tanner J, Swarbrook S, Stuart J. Surgical hand antisepsis to reduce surgical site infection. Cochrane Database Syst Rev. 2008;1:Cd004288.
25.
go back to reference Newman JB, Bullock M, Goyal R. Comparison of glove donning techniques for the likelihood of gown contamination. An infection control study. Acta Orthop Belg. 2007;73(6):765–71.PubMed Newman JB, Bullock M, Goyal R. Comparison of glove donning techniques for the likelihood of gown contamination. An infection control study. Acta Orthop Belg. 2007;73(6):765–71.PubMed
26.
go back to reference Rawson BV, Cocker J, Evans PG, Wheeler JP, Akrill PM. Internal contamination of gloves: routes and consequences. Ann Occup Hyg. 2005;49(6):535–41.PubMed Rawson BV, Cocker J, Evans PG, Wheeler JP, Akrill PM. Internal contamination of gloves: routes and consequences. Ann Occup Hyg. 2005;49(6):535–41.PubMed
27.
go back to reference Rocha LA, Ferreira de Almeida EBL, Gontijo Filho PP. Changes in hands microbiota associated with skin damage because of hand hygiene procedures on the health care workers. Am J Infect Control. 2009;37(2):155–9.CrossRef Rocha LA, Ferreira de Almeida EBL, Gontijo Filho PP. Changes in hands microbiota associated with skin damage because of hand hygiene procedures on the health care workers. Am J Infect Control. 2009;37(2):155–9.CrossRef
28.
go back to reference Fernandez M, Del Castillo JL, Nieto MJ. Surgical Gown’s cuff modification to prevent surgical contamination. J Maxillofac Oral Surg. 2015;14(2):474–5.CrossRef Fernandez M, Del Castillo JL, Nieto MJ. Surgical Gown’s cuff modification to prevent surgical contamination. J Maxillofac Oral Surg. 2015;14(2):474–5.CrossRef
29.
go back to reference Guo YP, Wong PM, Li Y, Or PP. Is double-gloving really protective? A comparison between the glove perforation rate among perioperative nurses with single and double gloves during surgery. Am J Surg. 2012;204(2):210–5.CrossRef Guo YP, Wong PM, Li Y, Or PP. Is double-gloving really protective? A comparison between the glove perforation rate among perioperative nurses with single and double gloves during surgery. Am J Surg. 2012;204(2):210–5.CrossRef
Metadata
Title
Exploring bacterial growth and recolonization after preoperative hand disinfection and surgery between operating room nurses and non-health care workers: a pilot study
Authors
Camilla Wistrand
Bo Söderquist
Karin Falk-Brynhildsen
Ulrica Nilsson
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2018
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-018-3375-3

Other articles of this Issue 1/2018

BMC Infectious Diseases 1/2018 Go to the issue