Skip to main content
Top
Published in: BMC Infectious Diseases 1/2018

Open Access 01-12-2018 | Research article

High expression of HMGB1 in children with refractory Mycoplasma pneumoniae pneumonia

Authors: Ying Ding, Chu Chu, Yuqin Li, Gen Li, Xiaoli Lei, Weifang Zhou, Zhengrong Chen

Published in: BMC Infectious Diseases | Issue 1/2018

Login to get access

Abstract

Background

Increasing numbers of refractory or severe, even fatal, cases of Mycoplasma pneumoniae infections have been reported in recent years. Excessive inflammatory responses play a vital role in the pathogenesis of refractory M. pneumoniae pneumonia (RMPP). HMGB1 is an actively secreted cytokine produced by macrophages and other inflammatory cells that participates in various infectious diseases. The present study aimed to explore the role and clinical significance of HMGB1 in children with RMPP and the potential mechanism of HMGB1 expression.

Methods

Four hundred and fifty-two children diagnosed with M. pneumoniae pneumonia, including 108 children with RMPP, were enrolled from January 2013 to December 2015 at the Children’s Hospital of Soochow University. HMGB1, TNF-α, and IL-6 in peripheral blood from RMPP and non-RMPP (NRMPP) cases were detected by real-time PCR and ELISA. Lipid-associated membrane proteins (LAMPs) were extracted from live M. pneumoniae and prepared at different concentrations for stimulation of THP-1 cells. After coculture with LAMPs, HMGB1, TNF-α, IL-6, RAGE, TLR2, and TLR4 in THP-1 cells were detected by real-time PCR.

Results

Occurrences of cough, fever, and abnormal lung signs were more frequent in RMPP cases compared with NRMPP cases (all p < 0.05). Children with RMPP had longer hospital stays than children with NRMPP (p < 0.05). Different distributions of lymphocytes were noted between RMPP and NRMPP cases. HMGB1, TNF-α, and IL-6 levels were significantly higher in RMPP cases compared with NRMPP cases (all p < 0.05). HMGB1 had good diagnostic ability to differentiate RMPP with AUC of 0.876, sensitivity of 0.833, and specificity of 0.824 compared with TNF-α and IL-6. HMGB1 expression in THP-1 cells was increased by stimulation with 10 μg/ml LAMPs. TLR2 expression was increased after stimulation with 6 μg/ml LAMPs. HMGB1 level was positively associated with TNF-α, IL-6, and TLR2 levels.

Conclusions

HMGB1 is a good diagnostic biomarker for differentiating RMPP and NRMPP. LAMPs from M. pneumoniae may induce HMGB1 expression in immune cells through the TLR2 pathway. Further in vitro and in vivo studies are needed for the development of a new treatment strategy to inhibit the HMGB1 pathway, thereby preventing the inflammation in RMPP.
Literature
1.
go back to reference Ngeow YF, Suwanjutha S, Chantarojanasriri T, Wang F, Saniel M, Alejandria M, et al. An Asian study on the prevalence of atypical respiratory pathogens in community-acquired pneumonia. Int J Infect Dis. 2005;9:144–53.CrossRefPubMed Ngeow YF, Suwanjutha S, Chantarojanasriri T, Wang F, Saniel M, Alejandria M, et al. An Asian study on the prevalence of atypical respiratory pathogens in community-acquired pneumonia. Int J Infect Dis. 2005;9:144–53.CrossRefPubMed
2.
go back to reference Meyer Sauteur PM, Jacobs BC, Spuesens EB, Jacobs E, Nadal D, Vink C, et al. Antibody responses to Mycoplasma pneumoniae: role in pathogenesis and diagnosis of encephalitis? PLoS Pathog. 2014;10:e1003983.CrossRefPubMedPubMedCentral Meyer Sauteur PM, Jacobs BC, Spuesens EB, Jacobs E, Nadal D, Vink C, et al. Antibody responses to Mycoplasma pneumoniae: role in pathogenesis and diagnosis of encephalitis? PLoS Pathog. 2014;10:e1003983.CrossRefPubMedPubMedCentral
4.
go back to reference Seto S, Kenri T, Tomiyama T, Miyata M. Involvement of P1 adhesin in gliding motility of Mycoplasma pneumoniae as revealed by the inhibitory effects of antibody under optimized gliding conditions. J Bacteriol. 2005;187:1875–7.CrossRefPubMedPubMedCentral Seto S, Kenri T, Tomiyama T, Miyata M. Involvement of P1 adhesin in gliding motility of Mycoplasma pneumoniae as revealed by the inhibitory effects of antibody under optimized gliding conditions. J Bacteriol. 2005;187:1875–7.CrossRefPubMedPubMedCentral
5.
go back to reference Arai S, Furukawa M, Munakata T, Kuwano K, Inoue H, Miyazaki T. Enhancement of cytotoxicity of active macrophages by mycoplasma: role of mycoplasma-associated induction of tumor necrosis factor-alpha (TNF-alpha) in macrophages. Microbiol Immunol. 1990;34(3):231–43.CrossRefPubMed Arai S, Furukawa M, Munakata T, Kuwano K, Inoue H, Miyazaki T. Enhancement of cytotoxicity of active macrophages by mycoplasma: role of mycoplasma-associated induction of tumor necrosis factor-alpha (TNF-alpha) in macrophages. Microbiol Immunol. 1990;34(3):231–43.CrossRefPubMed
6.
go back to reference Wang Y, Liu S, Li Y, Wang Q, Shao J, Chen Y, et al. Mycoplasma bovis-derived lipid-associated membrane proteins activate IL-1β production through the NF-κB pathway via toll-like receptor 2 and MyD88. Dev Comp Immunol. 2016;55:111–8.CrossRefPubMed Wang Y, Liu S, Li Y, Wang Q, Shao J, Chen Y, et al. Mycoplasma bovis-derived lipid-associated membrane proteins activate IL-1β production through the NF-κB pathway via toll-like receptor 2 and MyD88. Dev Comp Immunol. 2016;55:111–8.CrossRefPubMed
7.
go back to reference Salvatore CM, Fonseca-Aten M, Katz-Gaynor K, Gomez AM, Mejias A, Somers C, et al. Respiratory tract infection with Mycoplasma pneumoniae in interleukin-12 knockout mice results in improved bacterial clearance and reduced pulmonary inflammation. Infect Immun. 2007;75(1):236–42.CrossRefPubMed Salvatore CM, Fonseca-Aten M, Katz-Gaynor K, Gomez AM, Mejias A, Somers C, et al. Respiratory tract infection with Mycoplasma pneumoniae in interleukin-12 knockout mice results in improved bacterial clearance and reduced pulmonary inflammation. Infect Immun. 2007;75(1):236–42.CrossRefPubMed
8.
go back to reference Wang M, Wang Y, Yan Y, Zhu C, Huang L, Shao X, et al. Clinical and laboratory profiles of refractory Mycoplasma pneumoniae pneumonia in children. Int J Infect Dis. 2014;29:18–23.CrossRefPubMed Wang M, Wang Y, Yan Y, Zhu C, Huang L, Shao X, et al. Clinical and laboratory profiles of refractory Mycoplasma pneumoniae pneumonia in children. Int J Infect Dis. 2014;29:18–23.CrossRefPubMed
9.
go back to reference Tamura A, Matsubara K, Tanaka T, Nigami H, Yura K, Fukaya T. Methylprednisolone pulse therapy for refractory Mycoplasma pneumoniae pneumonia in children. J Inf Secur. 2008;57(3):223–8. Tamura A, Matsubara K, Tanaka T, Nigami H, Yura K, Fukaya T. Methylprednisolone pulse therapy for refractory Mycoplasma pneumoniae pneumonia in children. J Inf Secur. 2008;57(3):223–8.
10.
go back to reference Zhang Y, Mei S, Zhou Y, Huang M, Dong G, Chen Z. Cytokines as the good predictors of refractory Mycoplasma pneumoniae pneumonia in school-aged children. Sci Rep. 2016;6:37037.CrossRefPubMedPubMedCentral Zhang Y, Mei S, Zhou Y, Huang M, Dong G, Chen Z. Cytokines as the good predictors of refractory Mycoplasma pneumoniae pneumonia in school-aged children. Sci Rep. 2016;6:37037.CrossRefPubMedPubMedCentral
11.
go back to reference Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M, Che J, et al. HMGB-1 as a late mediator of endotoxin lethality in mice. Science. 1999;285:248–51.CrossRefPubMed Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M, Che J, et al. HMGB-1 as a late mediator of endotoxin lethality in mice. Science. 1999;285:248–51.CrossRefPubMed
13.
go back to reference Ledford JG, Lo B, Kislan MM, Thomas JM, Evans K, Cain DW, et al. Surfactant protein-a inhibits mycoplasma-induced dendritic cell maturation through regulation of HMGB-1 cytokine activity. J Immunol. 2010;185(7):3884–94.CrossRefPubMedPubMedCentral Ledford JG, Lo B, Kislan MM, Thomas JM, Evans K, Cain DW, et al. Surfactant protein-a inhibits mycoplasma-induced dendritic cell maturation through regulation of HMGB-1 cytokine activity. J Immunol. 2010;185(7):3884–94.CrossRefPubMedPubMedCentral
14.
15.
go back to reference Yan Y, Wei Y, Jiang W, Hao C. The clinical characteristics of corticosteroid-resistant refractory Mycoplasma pneumoniae pneumonia in children. Sci Rep. 2016;6:39929.CrossRefPubMedPubMedCentral Yan Y, Wei Y, Jiang W, Hao C. The clinical characteristics of corticosteroid-resistant refractory Mycoplasma pneumoniae pneumonia in children. Sci Rep. 2016;6:39929.CrossRefPubMedPubMedCentral
16.
go back to reference Miyashita N, Narita M, Tanaka T, Akaike H, Teranishi H, Oishi T, et al. Histological findings in severe Mycoplasma pneumoniae pneumonia. J Med Microbiol 2017;66(5):690–2.CrossRefPubMed Miyashita N, Narita M, Tanaka T, Akaike H, Teranishi H, Oishi T, et al. Histological findings in severe Mycoplasma pneumoniae pneumonia. J Med Microbiol 2017;66(5):690–2.CrossRefPubMed
17.
go back to reference Miyashita N, Kawai Y, Inamura N, Tanaka T, Akaike H, Teranishi H, et al. Setting a standard for the initiation of steroid therapy in refractory or severe Mycoplasma pneumoniae pneumonia in adolescents and adults. J Infect Chemother. 2015 Mar;21(3):153–60.CrossRefPubMed Miyashita N, Kawai Y, Inamura N, Tanaka T, Akaike H, Teranishi H, et al. Setting a standard for the initiation of steroid therapy in refractory or severe Mycoplasma pneumoniae pneumonia in adolescents and adults. J Infect Chemother. 2015 Mar;21(3):153–60.CrossRefPubMed
18.
go back to reference Yang HJ, Song DJ, Shim JY. Mechanism of resistance acquisition and treatment of macrolide-resistant Mycoplasma pneumoniae pneumonia in children. Korean J Pediatr. 2017;60(6):167–74.CrossRefPubMedPubMedCentral Yang HJ, Song DJ, Shim JY. Mechanism of resistance acquisition and treatment of macrolide-resistant Mycoplasma pneumoniae pneumonia in children. Korean J Pediatr. 2017;60(6):167–74.CrossRefPubMedPubMedCentral
19.
go back to reference Yang H, Wang H, Chavan SS, Andersson U. High mobility group box protein 1 (HMGB1): the prototypical endogenous danger molecule. Mol Med. 2015;21(Suppl 1):S6–S12.CrossRefPubMedPubMedCentral Yang H, Wang H, Chavan SS, Andersson U. High mobility group box protein 1 (HMGB1): the prototypical endogenous danger molecule. Mol Med. 2015;21(Suppl 1):S6–S12.CrossRefPubMedPubMedCentral
20.
go back to reference Lee IC, Kim DY, Bae JS. Sulforaphane Reduces HMGB1-Mediated Septic Responses and Improves Survival Rate in Septic Mice. Am J Chin Med. 2017:1–19. Lee IC, Kim DY, Bae JS. Sulforaphane Reduces HMGB1-Mediated Septic Responses and Improves Survival Rate in Septic Mice. Am J Chin Med. 2017:1–19.
21.
go back to reference Hosakote YM, Brasier AR, Casola A, Garofalo RP, Kurosky A. Respiratory syncytial virus infection triggers epithelial HMGB1 release as a damage-associated molecular pattern promoting a Monocytic inflammatory response. J Virol. 2016;90(21):9618–31.CrossRefPubMedPubMedCentral Hosakote YM, Brasier AR, Casola A, Garofalo RP, Kurosky A. Respiratory syncytial virus infection triggers epithelial HMGB1 release as a damage-associated molecular pattern promoting a Monocytic inflammatory response. J Virol. 2016;90(21):9618–31.CrossRefPubMedPubMedCentral
22.
go back to reference Llibre JM, Urban A, Garcia E, et al. Bronchiolitis obliterans organizing pneumonia associated with acute Mycoplasma pneumoniae infection[J]. ClinInfect Dis. 2013;30(6):1340–2. Llibre JM, Urban A, Garcia E, et al. Bronchiolitis obliterans organizing pneumonia associated with acute Mycoplasma pneumoniae infection[J]. ClinInfect Dis. 2013;30(6):1340–2.
23.
go back to reference Radisic M, Torn A, Gutierrez P, et al. Severe acute lung injury caused by Mgcoplasma pneumoniae: potential role for steroid pulses in treatment[J]. Clin Infect Dis. 2012;33(6):1507–11.CrossRef Radisic M, Torn A, Gutierrez P, et al. Severe acute lung injury caused by Mgcoplasma pneumoniae: potential role for steroid pulses in treatment[J]. Clin Infect Dis. 2012;33(6):1507–11.CrossRef
24.
go back to reference Kazachkow MY, Hu PC, Carson JL, et al. Release of cytokines by human nasal epithelial cells and peripheral blood mononuclear cells infected with mycoplasma pneumoniae[J]. Exp Biol Med. 2013;232(5):330–5. Kazachkow MY, Hu PC, Carson JL, et al. Release of cytokines by human nasal epithelial cells and peripheral blood mononuclear cells infected with mycoplasma pneumoniae[J]. Exp Biol Med. 2013;232(5):330–5.
25.
go back to reference Hsia BJ, Ledford JG, Potts-Kant EN, et al. Mast cell TNF receptors regulate responses to mycoplasma pneumoniae in surfactant protein a (SP-A)−/− mice[J]. J Allergy Clin Immunol. 2012;130(1):205–14.CrossRefPubMedPubMedCentral Hsia BJ, Ledford JG, Potts-Kant EN, et al. Mast cell TNF receptors regulate responses to mycoplasma pneumoniae in surfactant protein a (SP-A)−/− mice[J]. J Allergy Clin Immunol. 2012;130(1):205–14.CrossRefPubMedPubMedCentral
26.
go back to reference Tsujimoto H, Takahata R, Nomura S, et al. Predictive value of pleural and serum interleukin-6 levels for pneumonia and hypo-oxygenations after esophageetomy[J]. J Surg Res. 2013;182(2):e61.CrossRefPubMed Tsujimoto H, Takahata R, Nomura S, et al. Predictive value of pleural and serum interleukin-6 levels for pneumonia and hypo-oxygenations after esophageetomy[J]. J Surg Res. 2013;182(2):e61.CrossRefPubMed
27.
go back to reference Hsieh CC, Tang RB, Tsai CH, et al. Serum interleukin-6 and tumor necrosis factor-alpha concentrations in children with mycoplasma pneumonia[J]. Microbiol Immunol Infect. 2001;34(2):109–12. Hsieh CC, Tang RB, Tsai CH, et al. Serum interleukin-6 and tumor necrosis factor-alpha concentrations in children with mycoplasma pneumonia[J]. Microbiol Immunol Infect. 2001;34(2):109–12.
28.
go back to reference Hu J, Chen C, Ou G, You X, Tan T, Hu X, et al. Nrf2 regulates the inflammatory response, including heme oxygenase-1 induction, by Mycoplasma pneumoniae lipid-associated membrane proteins in THP-1 cells. Pathog Dis. 2017;75(4):44.CrossRef Hu J, Chen C, Ou G, You X, Tan T, Hu X, et al. Nrf2 regulates the inflammatory response, including heme oxygenase-1 induction, by Mycoplasma pneumoniae lipid-associated membrane proteins in THP-1 cells. Pathog Dis. 2017;75(4):44.CrossRef
29.
go back to reference Choi SY, Lim JW, Shimizu T, Kuwano K, Kim JM, Kim H. Reactive oxygen species mediate Jak2/Stat3 activation and IL-8 expression in pulmonary epithelial cells stimulated with lipid-associated membrane proteins from Mycoplasma pneumoniae. Inflamm Res. 2012;61(5):493–501.CrossRefPubMed Choi SY, Lim JW, Shimizu T, Kuwano K, Kim JM, Kim H. Reactive oxygen species mediate Jak2/Stat3 activation and IL-8 expression in pulmonary epithelial cells stimulated with lipid-associated membrane proteins from Mycoplasma pneumoniae. Inflamm Res. 2012;61(5):493–501.CrossRefPubMed
31.
go back to reference Shimizu T, Kida Y, Kuwano K. Triacylated lipoproteins derived from Mycoplasma pneumoniae activate nuclear factor-kappaB through toll-like receptors 1 and 2. Immunology. 2007;121(4):473–83.CrossRefPubMedPubMedCentral Shimizu T, Kida Y, Kuwano K. Triacylated lipoproteins derived from Mycoplasma pneumoniae activate nuclear factor-kappaB through toll-like receptors 1 and 2. Immunology. 2007;121(4):473–83.CrossRefPubMedPubMedCentral
32.
go back to reference Andersson U, Wang H, Palmblad K, Aveberger AC, Bloom O, Erlandsson-Harris H, et al. High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J Exp Med. 2000;192(4):565–70.CrossRefPubMedPubMedCentral Andersson U, Wang H, Palmblad K, Aveberger AC, Bloom O, Erlandsson-Harris H, et al. High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J Exp Med. 2000;192(4):565–70.CrossRefPubMedPubMedCentral
33.
go back to reference Van Zoelen MA, Laterre PF, van Veen SQ, et al. Systemic and local high mobility group box 1 concentrations during severe infection[J]. Crit Care Med. 2007;35(12):2799–804.CrossRefPubMed Van Zoelen MA, Laterre PF, van Veen SQ, et al. Systemic and local high mobility group box 1 concentrations during severe infection[J]. Crit Care Med. 2007;35(12):2799–804.CrossRefPubMed
Metadata
Title
High expression of HMGB1 in children with refractory Mycoplasma pneumoniae pneumonia
Authors
Ying Ding
Chu Chu
Yuqin Li
Gen Li
Xiaoli Lei
Weifang Zhou
Zhengrong Chen
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2018
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-018-3346-8

Other articles of this Issue 1/2018

BMC Infectious Diseases 1/2018 Go to the issue