Skip to main content
Top
Published in: BMC Infectious Diseases 1/2018

Open Access 01-12-2018 | Research article

Brucella abortus: determination of survival times and evaluation of methods for detection in several matrices

Authors: Rene Kaden, Sevinc Ferrari, Tomas Jinnerot, Martina Lindberg, Tara Wahab, Moa Lavander

Published in: BMC Infectious Diseases | Issue 1/2018

Login to get access

Abstract

Background

Brucella abortus is a highly pathogenic zoonotic agent, tempting for the development of a rapid diagnostic method to enable adequate treatment and prevent further spread. Enrichment of the bacteria is often used as a first step in diagnostics to increase the bacterial number above the detection limit of the real-time PCR. The enrichment of Brucella spp. takes at least 3 days, which might be avoidable if sensitive PCR methods can be used. Since many matrices contain PCR inhibitors, the limit of detection (LOD) must be determined for each separate matrix.
Another aim of this study was the determination of survival of Brucella abortus in the analyzed matrices.

Methods

The LOD for the detection of B. abortus in 14 matrices, relevant for human medicine, veterinary medicine and food and feed safety, was determined to evaluate the need of a pre-enrichment step prior to real-time PCR.
The survival of B. abortus in the spiked matrices was tested by plate count in a 7-day interval for 132 days.

Results

The limit of detection for B. abortus in most matrices was in the range of 103–104 CFU/g for cultivation and 104–105 CFU/g for direct real-time PCR.
The survival time of B. abortus was less than 21 days in apple purée and stomach content and 28 days in water while B. abortus remained viable at day 132 in milk, blood, spinach and minced meat.

Conclusions

A direct PCR analysis without enrichment of bacteria saves at least 3 days. However, the limit of detection between direct PCR and plate count differs in a 10 fold range. We conclude that this lower sensitivity is acceptable in most cases especially if quick analysis are required.
Literature
1.
go back to reference Corbel MJ. Brucellosis in humans and animals. Geneva: World Health Organization Publications; 2006. Corbel MJ. Brucellosis in humans and animals. Geneva: World Health Organization Publications; 2006.
2.
go back to reference Farrell ID. The development of a new selective medium for the isolation of Brucella abortus from contaminated sources. Res Vet Sci. 1974;16:280–6.PubMed Farrell ID. The development of a new selective medium for the isolation of Brucella abortus from contaminated sources. Res Vet Sci. 1974;16:280–6.PubMed
3.
go back to reference Farrell ID, Robertson L. A comparison of various selective media, including a new selective medium for the isolation of Brucellae from milk. J Appl Bact. 1972;35:625–30.CrossRef Farrell ID, Robertson L. A comparison of various selective media, including a new selective medium for the isolation of Brucellae from milk. J Appl Bact. 1972;35:625–30.CrossRef
4.
go back to reference van Doornum GJJ, Guldemeester J, Osterhaus ADME, Niesters HGM. Diagnosing herpesvirus infections by real-time amplification and rapid culture. J Clin Microbiol. 2003;41(2):576–80.CrossRefPubMedPubMedCentral van Doornum GJJ, Guldemeester J, Osterhaus ADME, Niesters HGM. Diagnosing herpesvirus infections by real-time amplification and rapid culture. J Clin Microbiol. 2003;41(2):576–80.CrossRefPubMedPubMedCentral
5.
go back to reference Bricker BJ, Halling SM. Differentiation of Brucella abortus bv. 1, 2, and 4, Brucella melitensis, Brucella ovis, and Brucella suis bv. 1 by PCR. J Clin Microbiol. 1994;32(11):2660–6.PubMedPubMedCentral Bricker BJ, Halling SM. Differentiation of Brucella abortus bv. 1, 2, and 4, Brucella melitensis, Brucella ovis, and Brucella suis bv. 1 by PCR. J Clin Microbiol. 1994;32(11):2660–6.PubMedPubMedCentral
6.
go back to reference Mancilla M, Ulloa M, López-Goñi I, Moriyón I, María Zárraga A. Identification of new IS711 insertion sites in Brucella abortus field isolates. BMC Microbiol. 2011;11:176.CrossRefPubMedPubMedCentral Mancilla M, Ulloa M, López-Goñi I, Moriyón I, María Zárraga A. Identification of new IS711 insertion sites in Brucella abortus field isolates. BMC Microbiol. 2011;11:176.CrossRefPubMedPubMedCentral
7.
go back to reference Romero C, Lopez-Goñi I. Improved method for purification of bacterial DNA from bovine milk for detection of Brucella spp. by PCR. Appl Environ Microbiol. 1999;65(8):3735–7.PubMedPubMedCentral Romero C, Lopez-Goñi I. Improved method for purification of bacterial DNA from bovine milk for detection of Brucella spp. by PCR. Appl Environ Microbiol. 1999;65(8):3735–7.PubMedPubMedCentral
9.
go back to reference Kaden R, Ågren J, Båverud V, Hallgren G, Ferrari S, Börjesson J, Lindberg M, Bäckman S, Wahab T. Brucellosis outbreak in a Swedish kennel in 2013: determination of genetic markers for source tracing. Vet Microbiol. 2014;174(3–4):523–30.CrossRefPubMed Kaden R, Ågren J, Båverud V, Hallgren G, Ferrari S, Börjesson J, Lindberg M, Bäckman S, Wahab T. Brucellosis outbreak in a Swedish kennel in 2013: determination of genetic markers for source tracing. Vet Microbiol. 2014;174(3–4):523–30.CrossRefPubMed
10.
go back to reference Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55(4):611–22.CrossRefPubMed Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55(4):611–22.CrossRefPubMed
11.
go back to reference Maturin LJ, Peeler JT. Aerobic plate count. In: Nutrition CfFSA, editor. Bacteriological analytical manual online. 8th ed. Silver Spring. US Food and Drug Administration; 2001. Maturin LJ, Peeler JT. Aerobic plate count. In: Nutrition CfFSA, editor. Bacteriological analytical manual online. 8th ed. Silver Spring. US Food and Drug Administration; 2001.
12.
go back to reference Stack JA, Harrison M, Perrett LL. Evaluation of a selective medium for Brucella isolation using natamycin. J Appl Microbiol. 2002;92(4):724–8.CrossRefPubMed Stack JA, Harrison M, Perrett LL. Evaluation of a selective medium for Brucella isolation using natamycin. J Appl Microbiol. 2002;92(4):724–8.CrossRefPubMed
13.
go back to reference Falenski A, Mayer-Scholl A, Filter M, Göllner C, Appel B, Nöckler K. Survival of Brucella spp. in mineral water, milk and yogurt. Int J Food Microbiol. 2011;145(1):326–30.CrossRefPubMed Falenski A, Mayer-Scholl A, Filter M, Göllner C, Appel B, Nöckler K. Survival of Brucella spp. in mineral water, milk and yogurt. Int J Food Microbiol. 2011;145(1):326–30.CrossRefPubMed
14.
go back to reference Mitscherlich PE, Marth EH. Microbial survival in the environment - Bacteria and Rickettsiae important in human and animal health. Berlin-Heidelberg-New York-Tokyo: Springer Publishing House; 1984. Mitscherlich PE, Marth EH. Microbial survival in the environment - Bacteria and Rickettsiae important in human and animal health. Berlin-Heidelberg-New York-Tokyo: Springer Publishing House; 1984.
15.
go back to reference Hamdy MER, Amin AS. Detection of Brucella species in the milk of infected cattle, sheep, goats and camels by PCR. Vet J. 2002;163(3):299–305.CrossRefPubMed Hamdy MER, Amin AS. Detection of Brucella species in the milk of infected cattle, sheep, goats and camels by PCR. Vet J. 2002;163(3):299–305.CrossRefPubMed
16.
go back to reference Kaden R, Menger-Krug E, Emmerich K, Petrick K, Mühling M, Krolla-Sidenstein P. The dynamic cultivation system: a new method for the detection of temporal shifts in microbial community structure in clay. Appl Clay Sci. 2012;65–66:53–6.CrossRef Kaden R, Menger-Krug E, Emmerich K, Petrick K, Mühling M, Krolla-Sidenstein P. The dynamic cultivation system: a new method for the detection of temporal shifts in microbial community structure in clay. Appl Clay Sci. 2012;65–66:53–6.CrossRef
17.
go back to reference Takada-Hoshino Y, Matsumoto N. An improved DNA extraction method using skim milk from soils that strongly adsorb DNA. Microbes Environ. 2004;19(1):13–9. Takada-Hoshino Y, Matsumoto N. An improved DNA extraction method using skim milk from soils that strongly adsorb DNA. Microbes Environ. 2004;19(1):13–9.
18.
go back to reference Segura A, Moreno M, Molina A, García-Olmedo F. Novel defensin subfamily from spinach Spinacia oleracea. FEBS Lett. 1998;435(2):159–62.CrossRefPubMed Segura A, Moreno M, Molina A, García-Olmedo F. Novel defensin subfamily from spinach Spinacia oleracea. FEBS Lett. 1998;435(2):159–62.CrossRefPubMed
19.
go back to reference Ceylan E, Fung DY. Antimicrobial activity of species 1. J Rapid Methods Autom Microbiol. 2004;12(1):1–55.CrossRef Ceylan E, Fung DY. Antimicrobial activity of species 1. J Rapid Methods Autom Microbiol. 2004;12(1):1–55.CrossRef
Metadata
Title
Brucella abortus: determination of survival times and evaluation of methods for detection in several matrices
Authors
Rene Kaden
Sevinc Ferrari
Tomas Jinnerot
Martina Lindberg
Tara Wahab
Moa Lavander
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2018
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-018-3134-5

Other articles of this Issue 1/2018

BMC Infectious Diseases 1/2018 Go to the issue