Skip to main content
Top
Published in: BMC Infectious Diseases 1/2018

Open Access 01-12-2018 | Research article

GeneChip analysis of resistant Mycobacterium tuberculosis with previously treated tuberculosis in Changchun

Authors: Ming-Jin Zhang, Wen-Zhi Ren, Xue-Juan Sun, Yang Liu, Ke-Wei Liu, Zhong-Hao Ji, Wei Gao, Bao Yuan

Published in: BMC Infectious Diseases | Issue 1/2018

Login to get access

Abstract

Background

With the widespread use of rifampicin and isoniazid, bacterial resistance has become a growing problem. Additionally, the lack of relevant baseline information for the frequency of drug-resistant tuberculosis (TB) gene mutations is a critical issue, and the incidence of this infection in the city of Changchun has not investigated to date. However, compared with the slow traditional methods of drug susceptibility testing, recently developed detection methods, such as rifampicin and isoniazid resistance-related gene chip techniques, allow for rapid, easy detection and simultaneous testing for mutation frequency and drug resistance.

Methods

In this study, the rifampicin and isoniazid resistance-related gene mutation chip method was employed for an epidemiological investigation. To assess the gene mutation characteristics of drug-resistant TB and evaluate the chip method, we tested 2143 clinical specimens from patients from the infectious diseases hospital of Changchun city from January to December 2016. The drug sensitivity test method was used as the reference standard.

Results

The following mutation frequencies of sites in the rifampicin resistance gene rpoB were found: Ser531Leu (52.6%), His526Tyr (12.3%), and Leu511Pro (8.8%). The multidrug-resistance (MDR)-TB mutation frequency was 34.7% for rpoB Ser531Leu and katG Ser315Thr, 26.4% for rpoB Ser531Leu and inhA promoter − 15 (C → T), and 10.7% for rpoB His526Tyr and katG Ser315Thr. In addition, drug susceptibility testing served as a reference standard. In previously treated clinical cases, the sensitivity and specificity of GeneChip were 83.1 and 98.7% for rifampicin resistance, 79.9 and 99.6% for isoniazid resistance, and 74.1 and 99.8% for MDR-TB.

Conclusions

Our experimental results show that the chip method is accurate and reliable; it can be used to detect the type of drug-resistant gene mutation in clinical specimens. Moreover, this study can be used as a reference for future research on TB resistance baselines.
Appendix
Available only for authorised users
Literature
1.
go back to reference WHO. Global tuberculosis report. Geneva: WHO; 2015. WHO. Global tuberculosis report. Geneva: WHO; 2015.
2.
go back to reference Unissa AN, Subbian S, Hanna LE, Selvakumar N. Overview on mechanisms of isoniazid action and resistance in Mycobacterium tuberculosis. Infect Genet Evol. 2016;45:474–92.CrossRefPubMed Unissa AN, Subbian S, Hanna LE, Selvakumar N. Overview on mechanisms of isoniazid action and resistance in Mycobacterium tuberculosis. Infect Genet Evol. 2016;45:474–92.CrossRefPubMed
3.
go back to reference Campbell EA, Korzheva N, Mustaev A, Murakami K, Nair S, Goldfarb A, et al. Structural mechanism for rifampicin inhibition of bacterial rna polymerase. Cell. 2001;104:901–12.CrossRefPubMed Campbell EA, Korzheva N, Mustaev A, Murakami K, Nair S, Goldfarb A, et al. Structural mechanism for rifampicin inhibition of bacterial rna polymerase. Cell. 2001;104:901–12.CrossRefPubMed
4.
go back to reference Blanchard JS. Molecular mechanisms of drug resistance in Mycobacterium tuberculosis. Annu Rev Biochem. 1996;65:215–39.CrossRefPubMed Blanchard JS. Molecular mechanisms of drug resistance in Mycobacterium tuberculosis. Annu Rev Biochem. 1996;65:215–39.CrossRefPubMed
5.
go back to reference Espasa M, Salvado M, Vicente E, Tudo G, Alcaide F, Coll P, et al. Evaluation of the VersaTREK system compared to the Bactec MGIT 960 system for first-line drug susceptibility testing of Mycobacterium tuberculosis. J Clin Microbiol. 2012;50:488–91.CrossRefPubMedPubMedCentral Espasa M, Salvado M, Vicente E, Tudo G, Alcaide F, Coll P, et al. Evaluation of the VersaTREK system compared to the Bactec MGIT 960 system for first-line drug susceptibility testing of Mycobacterium tuberculosis. J Clin Microbiol. 2012;50:488–91.CrossRefPubMedPubMedCentral
6.
go back to reference Torelli Carpi P, Tortoli E. Results of different methods used for drug susceptibility of mycobacteria. Quad Sclavo Diagn. 1979;15(Suppl 1):580–5.PubMed Torelli Carpi P, Tortoli E. Results of different methods used for drug susceptibility of mycobacteria. Quad Sclavo Diagn. 1979;15(Suppl 1):580–5.PubMed
7.
go back to reference Kim SJ. Drug-susceptibility testing in tuberculosis: methods and reliability of results. Eur Respir J. 2005;25:564–9.CrossRefPubMed Kim SJ. Drug-susceptibility testing in tuberculosis: methods and reliability of results. Eur Respir J. 2005;25:564–9.CrossRefPubMed
8.
go back to reference Saravanan M, Niguse S, Abdulkader M, Tsegay E, Hailekiros H, Gebrekidan A, et al. Review on emergence of drug-resistant tuberculosis (MDR & XDR-TB) and its molecular diagnosis in Ethiopia. Microb Pathog. 2018;117:237–42.CrossRefPubMed Saravanan M, Niguse S, Abdulkader M, Tsegay E, Hailekiros H, Gebrekidan A, et al. Review on emergence of drug-resistant tuberculosis (MDR & XDR-TB) and its molecular diagnosis in Ethiopia. Microb Pathog. 2018;117:237–42.CrossRefPubMed
9.
go back to reference Wang JP, Rought SE, Corbeil J, Guiney DG. Gene expression profiling detects patterns of human macrophage responses following Mycobacterium tuberculosis infection. FEMS Immunol Med Microbiol. 2003;39:163–72.CrossRefPubMed Wang JP, Rought SE, Corbeil J, Guiney DG. Gene expression profiling detects patterns of human macrophage responses following Mycobacterium tuberculosis infection. FEMS Immunol Med Microbiol. 2003;39:163–72.CrossRefPubMed
10.
go back to reference Guo Y, Zhou Y, Wang C, Zhu L, Wang S, Li Q, et al. Rapid, accurate determination of multidrug resistance in M. Tuberculosis isolates and sputum using a biochip system. Int J Tuberc Lung Dis. 2009;13:914–20.PubMed Guo Y, Zhou Y, Wang C, Zhu L, Wang S, Li Q, et al. Rapid, accurate determination of multidrug resistance in M. Tuberculosis isolates and sputum using a biochip system. Int J Tuberc Lung Dis. 2009;13:914–20.PubMed
11.
go back to reference Bumgarner R. Overview of DNA microarrays: types, applications, and their future. Curr Protoc Mol Biol. 2013; Chapter 22: Unit;22:1.PubMed Bumgarner R. Overview of DNA microarrays: types, applications, and their future. Curr Protoc Mol Biol. 2013; Chapter 22: Unit;22:1.PubMed
12.
13.
go back to reference Zhao Y, Xu S, Wang L, Chin DP, Wang S, Jiang G, et al. National survey of drug-resistant tuberculosis in China. N Engl J Med. 2012;366:2161–70.CrossRefPubMed Zhao Y, Xu S, Wang L, Chin DP, Wang S, Jiang G, et al. National survey of drug-resistant tuberculosis in China. N Engl J Med. 2012;366:2161–70.CrossRefPubMed
14.
go back to reference Sampathkumar P. Drug resistant tuberculosis: a global public health issue. Int J Dermatol. 2008;47:985–8.CrossRefPubMed Sampathkumar P. Drug resistant tuberculosis: a global public health issue. Int J Dermatol. 2008;47:985–8.CrossRefPubMed
15.
go back to reference WHO/HTM/TB/2009.420. Guidelines for treatment of tuberculosis. fourth ed. Geneva: WHO; 2009. WHO/HTM/TB/2009.420. Guidelines for treatment of tuberculosis. fourth ed. Geneva: WHO; 2009.
16.
go back to reference Barrera L, Cooreman E, de Dieu Iragena J, Drobniewski F, Duda P, Havelkova M, et al. Policy guidance on drug-susceptibility testing (DST) of second-line Antituberculosis drugs. Geneva: World Health Organization; 2008. Barrera L, Cooreman E, de Dieu Iragena J, Drobniewski F, Duda P, Havelkova M, et al. Policy guidance on drug-susceptibility testing (DST) of second-line Antituberculosis drugs. Geneva: World Health Organization; 2008.
17.
go back to reference Markelov ML, Shipulin GA, Pokrovskii VI. Biochip technologies--new prospects in diagnosis of human diseases. Ter Arkh. 2008;80:79–85.PubMed Markelov ML, Shipulin GA, Pokrovskii VI. Biochip technologies--new prospects in diagnosis of human diseases. Ter Arkh. 2008;80:79–85.PubMed
18.
go back to reference Pang Y, Li Q, Ou X, Sohn H, Zhang Z, Li J, et al. Cost-effectiveness comparison of Genechip and conventional drug susceptibility test for detecting multidrug-resistant tuberculosis in China. PLoS One. 2013;8:e69267.CrossRefPubMedPubMedCentral Pang Y, Li Q, Ou X, Sohn H, Zhang Z, Li J, et al. Cost-effectiveness comparison of Genechip and conventional drug susceptibility test for detecting multidrug-resistant tuberculosis in China. PLoS One. 2013;8:e69267.CrossRefPubMedPubMedCentral
19.
go back to reference Zhu L, Liu Q, Martinez L, Shi J, Chen C, Shao Y, et al. Diagnostic value of GeneChip for detection of resistant Mycobacterium tuberculosis in patients with differing treatment histories. J Clin Microbiol. 2015;53:131–5.CrossRefPubMed Zhu L, Liu Q, Martinez L, Shi J, Chen C, Shao Y, et al. Diagnostic value of GeneChip for detection of resistant Mycobacterium tuberculosis in patients with differing treatment histories. J Clin Microbiol. 2015;53:131–5.CrossRefPubMed
20.
go back to reference Pang Y, Xia H, Zhang Z, Li J, Dong Y, Li Q, et al. Multicenter evaluation of genechip for detection of multidrug-resistant Mycobacterium tuberculosis. J Clin Microbiol. 2013;51:1707–13.CrossRefPubMedPubMedCentral Pang Y, Xia H, Zhang Z, Li J, Dong Y, Li Q, et al. Multicenter evaluation of genechip for detection of multidrug-resistant Mycobacterium tuberculosis. J Clin Microbiol. 2013;51:1707–13.CrossRefPubMedPubMedCentral
21.
go back to reference Tang P, Wang X, Shen X, Shi M, Zhu X, Yu X, et al. Use of DNA microarray chips for the rapid detection of Mycobacterium tuberculosis resistance to rifampicin and isoniazid. Exp Ther Med. 2017;13:2332–8.CrossRefPubMedPubMedCentral Tang P, Wang X, Shen X, Shi M, Zhu X, Yu X, et al. Use of DNA microarray chips for the rapid detection of Mycobacterium tuberculosis resistance to rifampicin and isoniazid. Exp Ther Med. 2017;13:2332–8.CrossRefPubMedPubMedCentral
22.
go back to reference Pang Y, Dong H, Tan Y, Deng Y, Cai X, Jing H, et al. Rapid diagnosis of MDR and XDR tuberculosis with the MeltPro TB assay in China. Sci Rep. 2016;6:25330.CrossRefPubMedPubMedCentral Pang Y, Dong H, Tan Y, Deng Y, Cai X, Jing H, et al. Rapid diagnosis of MDR and XDR tuberculosis with the MeltPro TB assay in China. Sci Rep. 2016;6:25330.CrossRefPubMedPubMedCentral
23.
go back to reference Zhang T, Hu S, Li G, Li H, Liu X, Niu J, et al. Evaluation of the MeltPro TB/STR assay for rapid detection of streptomycin resistance in Mycobacterium tuberculosis. Tuberc (Edinb). 2015;95:162–9.CrossRef Zhang T, Hu S, Li G, Li H, Liu X, Niu J, et al. Evaluation of the MeltPro TB/STR assay for rapid detection of streptomycin resistance in Mycobacterium tuberculosis. Tuberc (Edinb). 2015;95:162–9.CrossRef
24.
go back to reference Chen X, Ma Y, Jin Q, Jiang GL, Li CY, Wang Q. Characterization of the katG, inhA, ahpC, kasA, and oxyR gene mutations in isoniazid-resistant and susceptible strain of Mycobacterium tuberculosis by automated DNA sequencing. Zhonghua Jie He He Hu Xi Za Zhi. 2005;28:250–3.PubMed Chen X, Ma Y, Jin Q, Jiang GL, Li CY, Wang Q. Characterization of the katG, inhA, ahpC, kasA, and oxyR gene mutations in isoniazid-resistant and susceptible strain of Mycobacterium tuberculosis by automated DNA sequencing. Zhonghua Jie He He Hu Xi Za Zhi. 2005;28:250–3.PubMed
25.
go back to reference Fu LM. Exploring drug action on Mycobacterium tuberculosis using affymetrix oligonucleotide genechips. Tuberc (Edinb). 2006;86:134–43.CrossRef Fu LM. Exploring drug action on Mycobacterium tuberculosis using affymetrix oligonucleotide genechips. Tuberc (Edinb). 2006;86:134–43.CrossRef
26.
go back to reference De Rossi E, Ainsa JA, Riccardi G. Role of mycobacterial efflux transporters in drug resistance: an unresolved question. FEMS Microbiol Rev. 2006;30:36–52.CrossRefPubMed De Rossi E, Ainsa JA, Riccardi G. Role of mycobacterial efflux transporters in drug resistance: an unresolved question. FEMS Microbiol Rev. 2006;30:36–52.CrossRefPubMed
27.
go back to reference De La Iglesia AI, Morbidoni HR. Mechanisms of action of and resistance to rifampicin and isoniazid in Mycobacterium tuberculosis: new information on old friends. Rev Argent Microbiol. 2006;38:97–109.PubMed De La Iglesia AI, Morbidoni HR. Mechanisms of action of and resistance to rifampicin and isoniazid in Mycobacterium tuberculosis: new information on old friends. Rev Argent Microbiol. 2006;38:97–109.PubMed
28.
go back to reference Desikan P, Kharate A, Panwalkar N, Khurana J, Mirza SB, Chaturvedi A, et al. Frequency of mutations in rifampicin and isoniazid resistant isolates of M. Tuberculosis: an analysis from Central India. Germs. 2016;6:125–31.CrossRefPubMedPubMedCentral Desikan P, Kharate A, Panwalkar N, Khurana J, Mirza SB, Chaturvedi A, et al. Frequency of mutations in rifampicin and isoniazid resistant isolates of M. Tuberculosis: an analysis from Central India. Germs. 2016;6:125–31.CrossRefPubMedPubMedCentral
29.
go back to reference Huang H, Jin Q, Ma Y, Chen X, Zhuang Y. Characterization of rpoB mutations in rifampicin-resistant Mycobacterium tuberculosis isolated in China. Tuberc (Edinb). 2002;82:79–83.CrossRef Huang H, Jin Q, Ma Y, Chen X, Zhuang Y. Characterization of rpoB mutations in rifampicin-resistant Mycobacterium tuberculosis isolated in China. Tuberc (Edinb). 2002;82:79–83.CrossRef
30.
go back to reference Makadia JS, Jain A, Patra SK, Sherwal BL, Khanna A. Emerging trend of mutation profile of rpoB gene in MDR tuberculosis, North India. Indian J Clin Biochem. 2012;27:370–4.CrossRefPubMedPubMedCentral Makadia JS, Jain A, Patra SK, Sherwal BL, Khanna A. Emerging trend of mutation profile of rpoB gene in MDR tuberculosis, North India. Indian J Clin Biochem. 2012;27:370–4.CrossRefPubMedPubMedCentral
31.
go back to reference Isakova Zh T. Distribution of mutations in the rpoB, katG, inhA, ahpC gene of rifampicin and isoniazid resistant M. Tuberculosis strains isolated in Kyrgyz Republic. Mol Gen Mikrobiol Virusol. 2008;4:36–8. Isakova Zh T. Distribution of mutations in the rpoB, katG, inhA, ahpC gene of rifampicin and isoniazid resistant M. Tuberculosis strains isolated in Kyrgyz Republic. Mol Gen Mikrobiol Virusol. 2008;4:36–8.
32.
go back to reference Zhang Z, Li L, Luo F, Cheng P, Wu F, Wu Z, et al. Rapid and accurate detection of RMP- and INH- resistant Mycobacterium tuberculosis in spinal tuberculosis specimens by CapitalBio DNA microarray: a prospective validation study. BMC Infect Dis. 2012;12:303.CrossRefPubMedPubMedCentral Zhang Z, Li L, Luo F, Cheng P, Wu F, Wu Z, et al. Rapid and accurate detection of RMP- and INH- resistant Mycobacterium tuberculosis in spinal tuberculosis specimens by CapitalBio DNA microarray: a prospective validation study. BMC Infect Dis. 2012;12:303.CrossRefPubMedPubMedCentral
33.
go back to reference Llerena C, Medina R. Description of Mycobacterium tuberculosis mutations conferring resistance to rifampicin and isoniazid detected by GenoType(R) MTBDRplus V.2 in Colombia. Biomedica. 2017;37:28–33.CrossRefPubMed Llerena C, Medina R. Description of Mycobacterium tuberculosis mutations conferring resistance to rifampicin and isoniazid detected by GenoType(R) MTBDRplus V.2 in Colombia. Biomedica. 2017;37:28–33.CrossRefPubMed
34.
go back to reference Yao C, Zhu T, Li Y, Zhang L, Zhang B, Huang J, et al. Detection of rpoB, katG and inhA gene mutations in Mycobacterium tuberculosis clinical isolates from Chongqing as determined by microarray. Clin Microbiol Infect. 2010;16:1639–43.CrossRefPubMed Yao C, Zhu T, Li Y, Zhang L, Zhang B, Huang J, et al. Detection of rpoB, katG and inhA gene mutations in Mycobacterium tuberculosis clinical isolates from Chongqing as determined by microarray. Clin Microbiol Infect. 2010;16:1639–43.CrossRefPubMed
35.
go back to reference Monteserin J, Paul R, Latini C, Simboli N, Yokobori N, Delfederico L, et al. Relation of Mycobacterium tuberculosis mutations at katG315 and inhA-15 with drug resistance profile, genetic background, and clustering in Argentina. Diagn Microbiol Infect Dis. 2017;89:197–201.CrossRefPubMed Monteserin J, Paul R, Latini C, Simboli N, Yokobori N, Delfederico L, et al. Relation of Mycobacterium tuberculosis mutations at katG315 and inhA-15 with drug resistance profile, genetic background, and clustering in Argentina. Diagn Microbiol Infect Dis. 2017;89:197–201.CrossRefPubMed
36.
go back to reference Cafe Oliveira LN, Muniz-Sobrinho Jda S, Viana-Magno LA, Oliveira Melo SC, Macho A, Rios-Santos F. Detection of multidrug-resistant Mycobacterium tuberculosis strains isolated in Brazil using a multimarker genetic assay for katG and rpoB genes. Braz J Infect Dis. 2016;20:166–72.CrossRefPubMed Cafe Oliveira LN, Muniz-Sobrinho Jda S, Viana-Magno LA, Oliveira Melo SC, Macho A, Rios-Santos F. Detection of multidrug-resistant Mycobacterium tuberculosis strains isolated in Brazil using a multimarker genetic assay for katG and rpoB genes. Braz J Infect Dis. 2016;20:166–72.CrossRefPubMed
37.
go back to reference WHO. Global tuberculosis report. Geneva: WHO; 2017. WHO. Global tuberculosis report. Geneva: WHO; 2017.
Metadata
Title
GeneChip analysis of resistant Mycobacterium tuberculosis with previously treated tuberculosis in Changchun
Authors
Ming-Jin Zhang
Wen-Zhi Ren
Xue-Juan Sun
Yang Liu
Ke-Wei Liu
Zhong-Hao Ji
Wei Gao
Bao Yuan
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2018
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-018-3131-8

Other articles of this Issue 1/2018

BMC Infectious Diseases 1/2018 Go to the issue