Skip to main content
Top
Published in: BMC Infectious Diseases 1/2018

Open Access 01-12-2018 | Research article

Summary results of the 2014-2015 DARPA Chikungunya challenge

Authors: Sara Y. Del Valle, Benjamin H. McMahon, Jason Asher, Richard Hatchett, Joceline C. Lega, Heidi E. Brown, Mark E. Leany, Yannis Pantazis, David J. Roberts, Sean Moore, A Townsend Peterson, Luis E. Escobar, Huijie Qiao, Nicholas W. Hengartner, Harshini Mukundan

Published in: BMC Infectious Diseases | Issue 1/2018

Login to get access

Abstract

Background: Emerging pathogens such as Zika, chikungunya, Ebola, and dengue viruses are serious threats to national and global health security. Accurate forecasts of emerging epidemics and their severity are critical to minimizing subsequent mortality, morbidity, and economic loss. The recent introduction of chikungunya and Zika virus to the Americas underscores the need for better methods for disease surveillance and forecasting.
Methods: To explore the suitability of current approaches to forecasting emerging diseases, the Defense Advanced Research Projects Agency (DARPA) launched the 2014–2015 DARPA Chikungunya Challenge to forecast the number of cases and spread of chikungunya disease in the Americas. Challenge participants (n=38 during final evaluation) provided predictions of chikungunya epidemics across the Americas for a six-month period, from September 1, 2014 to February 16, 2015, to be evaluated by comparison with incidence data reported to the Pan American Health Organization (PAHO). This manuscript presents an overview of the challenge and a summary of the approaches used by the winners.
Results: Participant submissions were evaluated by a team of non-competing government subject matter experts based on numerical accuracy and methodology. Although this manuscript does not include in-depth analyses of the results, cursory analyses suggest that simpler models appear to outperform more complex approaches that included, for example, demographic information and transportation dynamics, due to the reporting biases, which can be implicitly captured in statistical models. Mosquito-dynamics, population specific information, and dengue-specific information correlated best with prediction accuracy.
Conclusion: We conclude that with careful consideration and understanding of the relative advantages and disadvantages of particular methods, implementation of an effective prediction system is feasible. However, there is a need to improve the quality of the data in order to more accurately predict the course of epidemics.
Literature
1.
go back to reference Hamer WH. The Milroy lectures on epidemic disease in England –The evidence of variability and of persistency of type. The Lancet. 1906; 167:665–662. Hamer WH. The Milroy lectures on epidemic disease in England –The evidence of variability and of persistency of type. The Lancet. 1906; 167:665–662.
2.
go back to reference Kermack WO, McKendrick AG. A contribution to the Mathematical Theory of Epidemics. In: Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 115. No. 772: 1927. p. 700–21. Kermack WO, McKendrick AG. A contribution to the Mathematical Theory of Epidemics. In: Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 115. No. 772: 1927. p. 700–21.
3.
4.
go back to reference Anderson RM, May RM, Boily M, Garnett G, Rowley J, May R. The spread of HIV-1 in Africa: sexual contact patterns and the predicted demographic impact of AIDS. Nature. 1991; 352(6336):581–9.CrossRefPubMed Anderson RM, May RM, Boily M, Garnett G, Rowley J, May R. The spread of HIV-1 in Africa: sexual contact patterns and the predicted demographic impact of AIDS. Nature. 1991; 352(6336):581–9.CrossRefPubMed
6.
go back to reference Tizzoni M, Bajardi P, Poletto C, Ramasco JJ, Balcan D, Gonçalves B, Perra N, Colizza V, Vespignani A. Real-time numerical forecast of global epidemic spreading: case study of 2009 A/H1N1pdm. BMC Med. 2012; 10(1):1.CrossRef Tizzoni M, Bajardi P, Poletto C, Ramasco JJ, Balcan D, Gonçalves B, Perra N, Colizza V, Vespignani A. Real-time numerical forecast of global epidemic spreading: case study of 2009 A/H1N1pdm. BMC Med. 2012; 10(1):1.CrossRef
7.
go back to reference Generous N, Fairchild G, Deshpande A, Del Valle SY, Priedhorsky R. Global disease monitoring and forecasting with Wikipedia. PLoS Comput Biol. 2014; 10(11):1003892.CrossRef Generous N, Fairchild G, Deshpande A, Del Valle SY, Priedhorsky R. Global disease monitoring and forecasting with Wikipedia. PLoS Comput Biol. 2014; 10(11):1003892.CrossRef
8.
go back to reference Brooks LC, Farrow DC, Hyun S, Tibshirani RJ, Rosenfeld R. Flexible modeling of epidemics with an empirical Bayes framework. PLoS Comput Biol. 2015; 11(8):1004382.CrossRef Brooks LC, Farrow DC, Hyun S, Tibshirani RJ, Rosenfeld R. Flexible modeling of epidemics with an empirical Bayes framework. PLoS Comput Biol. 2015; 11(8):1004382.CrossRef
9.
go back to reference Cretien J-P, Riley S, George DB. Mathematical modeling of the West Africa ebola epidemic. eLIFE. 2015; 4:09186. Cretien J-P, Riley S, George DB. Mathematical modeling of the West Africa ebola epidemic. eLIFE. 2015; 4:09186.
10.
go back to reference Moghadas SM, Pizzi NJ, Wu J, Yan P. Managing public health crises: the role of models in pandemic preparedness. Influenza Other Respir Viruses. 2009; 3(2):75–79.CrossRefPubMedPubMedCentral Moghadas SM, Pizzi NJ, Wu J, Yan P. Managing public health crises: the role of models in pandemic preparedness. Influenza Other Respir Viruses. 2009; 3(2):75–79.CrossRefPubMedPubMedCentral
11.
go back to reference Colizza V, Barrat A, Barthelemy M, Valleron A-J, Vespignani A. Modeling the worldwide spread of pandemic influenza: Baseline case and containment interventions. PLoS Med. 2007; 4(1):13.CrossRef Colizza V, Barrat A, Barthelemy M, Valleron A-J, Vespignani A. Modeling the worldwide spread of pandemic influenza: Baseline case and containment interventions. PLoS Med. 2007; 4(1):13.CrossRef
12.
go back to reference Chan J, Holmes A, Rabadan R. Network analysis of global influenza spread. PLoS Comput Biol. 2010; 6(11):1001005.CrossRef Chan J, Holmes A, Rabadan R. Network analysis of global influenza spread. PLoS Comput Biol. 2010; 6(11):1001005.CrossRef
13.
go back to reference Meltzer MI, Atkins CY, Santibanez S, Knust B, Petersen BW, Ervin ED, Nichol ST, Damon IK, Washington ML, et al. Estimating the future number of cases in the ebola epidemic – Liberia and Sierra Leone, 2014-2015. MMWR Surveill Summ. 2014; 63(Suppl 3):1–14. Meltzer MI, Atkins CY, Santibanez S, Knust B, Petersen BW, Ervin ED, Nichol ST, Damon IK, Washington ML, et al. Estimating the future number of cases in the ebola epidemic – Liberia and Sierra Leone, 2014-2015. MMWR Surveill Summ. 2014; 63(Suppl 3):1–14.
14.
go back to reference Bellan SE, Pulliam JR, Pearson CA, Champredon D, Fox SJ, Skrip L, Galvani AP, Galvani M, Gambhir M, Lopman BA, Porco TC, Meyers LA, Dusho J. Statistical power and validity of Ebola vaccine trials in Sierra Leone: A simulation study of trial design and analysis. Lancet Infect Dis. 2015; 15(6):703–10.CrossRefPubMedPubMedCentral Bellan SE, Pulliam JR, Pearson CA, Champredon D, Fox SJ, Skrip L, Galvani AP, Galvani M, Gambhir M, Lopman BA, Porco TC, Meyers LA, Dusho J. Statistical power and validity of Ebola vaccine trials in Sierra Leone: A simulation study of trial design and analysis. Lancet Infect Dis. 2015; 15(6):703–10.CrossRefPubMedPubMedCentral
15.
go back to reference Kucharski AJ, Eggo RM, Watson C, Camacho A, Funk S, Edmunds WJ. Effectiveness of ring vaccination as control strategy for Ebola virus disease. Emerg Infect Dis. 2016; 22(1):105–8.CrossRefPubMedPubMedCentral Kucharski AJ, Eggo RM, Watson C, Camacho A, Funk S, Edmunds WJ. Effectiveness of ring vaccination as control strategy for Ebola virus disease. Emerg Infect Dis. 2016; 22(1):105–8.CrossRefPubMedPubMedCentral
17.
go back to reference Biggerstaff M, Alper D, Dredze M, Fox S, Fung IC, Hickmann KS, Lewis B, Rosenfeld R, Shaman J, Tsou MH, Velardi P, Vespignani A, Finelli L. Results from the centers for disease control and prevention’s predict the 2013-2014 influenza season challenge. BMC Infect Dis. 2016; 16:357. https://doi.org/10.1186/s12879-016-1669-x. Biggerstaff M, Alper D, Dredze M, Fox S, Fung IC, Hickmann KS, Lewis B, Rosenfeld R, Shaman J, Tsou MH, Velardi P, Vespignani A, Finelli L. Results from the centers for disease control and prevention’s predict the 2013-2014 influenza season challenge. BMC Infect Dis. 2016; 16:357. https://​doi.​org/​10.​1186/​s12879-016-1669-x.
21.
go back to reference Moran KR, Fairchild G, Generous N, Hickmann K, Osthus D, Priedhorsky R, Hyman J, Del Valle SY. Epidemic forecasting is messier than weather forecasting: The role of human behavior and Internet data streams in epidemic forecast. J Infect Dis. 2016; 214(suppl 4):404–8.CrossRef Moran KR, Fairchild G, Generous N, Hickmann K, Osthus D, Priedhorsky R, Hyman J, Del Valle SY. Epidemic forecasting is messier than weather forecasting: The role of human behavior and Internet data streams in epidemic forecast. J Infect Dis. 2016; 214(suppl 4):404–8.CrossRef
22.
go back to reference Staples JE, Breiman RF, Powers AM. Chikungunya fever: An epidemiological review of a re-emerging infectious disease. Clin Inf Dis. 2009; 49(6):942–8.CrossRef Staples JE, Breiman RF, Powers AM. Chikungunya fever: An epidemiological review of a re-emerging infectious disease. Clin Inf Dis. 2009; 49(6):942–8.CrossRef
27.
go back to reference Hethcote HW. The mathematics of infectious diseases. SIAM Rev. 2000; 42(4):599–653.CrossRef Hethcote HW. The mathematics of infectious diseases. SIAM Rev. 2000; 42(4):599–653.CrossRef
29.
go back to reference Tarantola A. Inverse Problem Theory and Methods for Model Parameter Estimation. New York: Elsevier Sci; 1987. Tarantola A. Inverse Problem Theory and Methods for Model Parameter Estimation. New York: Elsevier Sci; 1987.
31.
go back to reference Yakob L, Clements AC. A mathematical model of Chikungunya dynamics and control: The major epidemic on Reunion Island. PLoS ONE. 2013; 8(3):57448.CrossRef Yakob L, Clements AC. A mathematical model of Chikungunya dynamics and control: The major epidemic on Reunion Island. PLoS ONE. 2013; 8(3):57448.CrossRef
32.
go back to reference Keeling MJ, Rohani P. Modeling Infectious Diseases in Humans and Animals. NJ: Princeton University Press; 2008. Keeling MJ, Rohani P. Modeling Infectious Diseases in Humans and Animals. NJ: Princeton University Press; 2008.
33.
go back to reference Xia Y, Bjørnstad ON, Grenfell BT. Measles metapopulation dynamics: A gravity model for epidemiological coupling and dynamics. Am Nat. 2004; 164(2):267–81.CrossRefPubMed Xia Y, Bjørnstad ON, Grenfell BT. Measles metapopulation dynamics: A gravity model for epidemiological coupling and dynamics. Am Nat. 2004; 164(2):267–81.CrossRefPubMed
35.
go back to reference Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol. 2005; 25(15):1965–78.CrossRef Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol. 2005; 25(15):1965–78.CrossRef
36.
go back to reference Soberón J, Nakamura M. Niches and distributional areas: Concepts, methods, and assumptions. Proc Natl Acad Sci U S A. 2009; 106(Supplement 2):19644–50.CrossRefPubMedPubMedCentral Soberón J, Nakamura M. Niches and distributional areas: Concepts, methods, and assumptions. Proc Natl Acad Sci U S A. 2009; 106(Supplement 2):19644–50.CrossRefPubMedPubMedCentral
37.
go back to reference Van Aelst S, Rousseeuw P. Minimum volume ellipsoid. Wiley Interdiscip Rev Comput Stat. 2009; 1(1):71–82.CrossRef Van Aelst S, Rousseeuw P. Minimum volume ellipsoid. Wiley Interdiscip Rev Comput Stat. 2009; 1(1):71–82.CrossRef
38.
go back to reference Campbell LP, Luther C, Moo-Llanes D, Ramsey JM, Danis-Lozano R, Peterson AT. Climate change influences on global distributions of dengue and Chikungunya virus vectors. Philos Trans R Soc Lond B Biol Sci. 2015; 370(1665):20140135.CrossRefPubMedPubMedCentral Campbell LP, Luther C, Moo-Llanes D, Ramsey JM, Danis-Lozano R, Peterson AT. Climate change influences on global distributions of dengue and Chikungunya virus vectors. Philos Trans R Soc Lond B Biol Sci. 2015; 370(1665):20140135.CrossRefPubMedPubMedCentral
39.
go back to reference Qiao H, Peterson AT, Campbell LP, Soberón J, Ji L, Escobar LE. NicheA: Creating virtual species and ecological niches in multivariate environmental scenarios. Ecography. 2016; 39:805–13.CrossRef Qiao H, Peterson AT, Campbell LP, Soberón J, Ji L, Escobar LE. NicheA: Creating virtual species and ecological niches in multivariate environmental scenarios. Ecography. 2016; 39:805–13.CrossRef
40.
go back to reference Martínez-Meyer E, Díaz-Porras D, Peterson AT, Yáñez-Arenas C. Ecological niche structure and rangewide abundance patterns of species. Biol Lett. 2013; 9(1):20120637.CrossRefPubMedPubMedCentral Martínez-Meyer E, Díaz-Porras D, Peterson AT, Yáñez-Arenas C. Ecological niche structure and rangewide abundance patterns of species. Biol Lett. 2013; 9(1):20120637.CrossRefPubMedPubMedCentral
41.
go back to reference Yáñez-Arenas C, Peterson AT, Mokondoko P, Rojas-Soto O, Martínez-Meyer E. The use of ecological niche modeling to infer potential risk areas of snakebite in the Mexican state of Veracruz. PLoS ONE. 2014; 9(6):100957.CrossRef Yáñez-Arenas C, Peterson AT, Mokondoko P, Rojas-Soto O, Martínez-Meyer E. The use of ecological niche modeling to infer potential risk areas of snakebite in the Mexican state of Veracruz. PLoS ONE. 2014; 9(6):100957.CrossRef
42.
go back to reference Holt RD. Bringing the Hutchinsonian niche into the 21st century: Ecological and evolutionary perspectives. Proc Natl Acad Sci U S A. 2009; 106(Supplement 2):19659–65.CrossRefPubMedPubMedCentral Holt RD. Bringing the Hutchinsonian niche into the 21st century: Ecological and evolutionary perspectives. Proc Natl Acad Sci U S A. 2009; 106(Supplement 2):19659–65.CrossRefPubMedPubMedCentral
43.
go back to reference Manthey JD, Campbell LP, Saupe EE, Soberón J, Hensz CM, Myers CE, Owens HL Ingenlo K, Peterson AT, Barve N, et al.A test of niche centrality as a determinant of population trends and conservation status in threatened and endangered North American birds. Endanger Species Res. 2015; 26(3):201–8.CrossRef Manthey JD, Campbell LP, Saupe EE, Soberón J, Hensz CM, Myers CE, Owens HL Ingenlo K, Peterson AT, Barve N, et al.A test of niche centrality as a determinant of population trends and conservation status in threatened and endangered North American birds. Endanger Species Res. 2015; 26(3):201–8.CrossRef
44.
go back to reference Lira-Noriega A, Manthey JD. Relationship of genetic diversity and niche centrality: A survey and analysis. Evolution. 2014; 68(4):1082–93.CrossRefPubMed Lira-Noriega A, Manthey JD. Relationship of genetic diversity and niche centrality: A survey and analysis. Evolution. 2014; 68(4):1082–93.CrossRefPubMed
45.
go back to reference Romero-Alvarez D, Peterson AT, Escobar LE. Surveillance fatigue (fatigatio vigilantiae) during epidemics. Rev Chil Infectología. 2017; 34:289–292.CrossRef Romero-Alvarez D, Peterson AT, Escobar LE. Surveillance fatigue (fatigatio vigilantiae) during epidemics. Rev Chil Infectología. 2017; 34:289–292.CrossRef
Metadata
Title
Summary results of the 2014-2015 DARPA Chikungunya challenge
Authors
Sara Y. Del Valle
Benjamin H. McMahon
Jason Asher
Richard Hatchett
Joceline C. Lega
Heidi E. Brown
Mark E. Leany
Yannis Pantazis
David J. Roberts
Sean Moore
A Townsend Peterson
Luis E. Escobar
Huijie Qiao
Nicholas W. Hengartner
Harshini Mukundan
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2018
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-018-3124-7

Other articles of this Issue 1/2018

BMC Infectious Diseases 1/2018 Go to the issue