Skip to main content
Top
Published in: BMC Infectious Diseases 1/2018

Open Access 01-12-2018 | Research article

The reachability of contagion in temporal contact networks: how disease latency can exploit the rhythm of human behavior

Authors: Ewan Colman, Kristen Spies, Shweta Bansal

Published in: BMC Infectious Diseases | Issue 1/2018

Login to get access

Abstract

Background

The symptoms of many infectious diseases influence their host to withdraw from social activity limiting their potential to spread. Successful transmission therefore requires the onset of infectiousness to coincide with a time when the host is socially active. Since social activity and infectiousness are both temporal phenomena, we hypothesize that diseases are most pervasive when these two processes are synchronized.

Methods

We consider disease dynamics that incorporate behavioral responses that effectively shorten the infectious period of the pathogen. Using data collected from face-to-face social interactions and synthetic contact networks constructed from empirical demographic data, we measure the reachability of this disease model and perform disease simulations over a range of latent period durations.

Results

We find that maximum transmission risk results when the disease latent period (and thus the generation time) are synchronized with human circadian rhythms of 24 h, and minimum transmission risk when latent periods are out of phase with circadian rhythms by 12 h. The effect of this synchronization is present for a range of disease models with realistic disease parameters and host behavioral responses.

Conclusions

The reproductive potential of pathogens is linked inextricably to the host social behavior required for transmission. We propose that future work should consider contact periodicity in models of disease dynamics, and suggest the possibility that disease control strategies may be designed to optimize against the effects of synchronization.
Appendix
Available only for authorised users
Literature
1.
go back to reference Manfredi P, D’Onofrio A. Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases. 1st edn.Verlag: Springer; 2013.CrossRef Manfredi P, D’Onofrio A. Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases. 1st edn.Verlag: Springer; 2013.CrossRef
2.
go back to reference Heesterbeek H, Anderson RM, Andreasen V, Bansal S, De Angelis D, Dye C, Eames KT, Edmunds WJ, Frost SD, Funk S, et al. Modeling infectious disease dynamics in the complex landscape of global health. Science. 2015; 347(6227):4339.CrossRef Heesterbeek H, Anderson RM, Andreasen V, Bansal S, De Angelis D, Dye C, Eames KT, Edmunds WJ, Frost SD, Funk S, et al. Modeling infectious disease dynamics in the complex landscape of global health. Science. 2015; 347(6227):4339.CrossRef
3.
go back to reference Bansal S, Grenfell B, Meyers LA. When individual behaviour matters: homogeneous and network models in epidemiology. J R Soc Interface. 2007; 4(16):879–91.CrossRefPubMedPubMedCentral Bansal S, Grenfell B, Meyers LA. When individual behaviour matters: homogeneous and network models in epidemiology. J R Soc Interface. 2007; 4(16):879–91.CrossRefPubMedPubMedCentral
4.
go back to reference Masuda N, Holme P. Predicting and controlling infectious disease epidemics using temporal networks. F1000prime reports. 2013; 5. Masuda N, Holme P. Predicting and controlling infectious disease epidemics using temporal networks. F1000prime reports. 2013; 5.
5.
go back to reference Holme P. Temporal network structures controlling disease spreading. Physical Review E. 2016; 94(2):022305.CrossRefPubMed Holme P. Temporal network structures controlling disease spreading. Physical Review E. 2016; 94(2):022305.CrossRefPubMed
6.
go back to reference Pastor-Satorras R, Castellano C, Van Mieghem P, Vespignani A. Epidemic processes in complex networks. Rev Mod Phys. 2015; 87:925–79.CrossRef Pastor-Satorras R, Castellano C, Van Mieghem P, Vespignani A. Epidemic processes in complex networks. Rev Mod Phys. 2015; 87:925–79.CrossRef
7.
go back to reference Sah P, Mann J, Bansal S. Disease implications of animal social network structure: a synthesis across social systems. J Anim Ecol. 2017; 87(3):546–58.CrossRef Sah P, Mann J, Bansal S. Disease implications of animal social network structure: a synthesis across social systems. J Anim Ecol. 2017; 87(3):546–58.CrossRef
8.
go back to reference Colman E, Bansal S. Social fluidity mobilizes infectious disease in human and animal populations. bioRxiv, 170266. 2017. Colman E, Bansal S. Social fluidity mobilizes infectious disease in human and animal populations. bioRxiv, 170266. 2017.
9.
go back to reference Funk S, Bansal S, Bauch CT, Eames KTD, Edmunds WJ, Galvani AP, Klepac P. Nine challenges in incorporating the dynamics of behaviour in infectious diseases models. Epidemics. 2015; 10:21–5. Challenges in Modelling Infectious DIsease Dynamics.CrossRefPubMed Funk S, Bansal S, Bauch CT, Eames KTD, Edmunds WJ, Galvani AP, Klepac P. Nine challenges in incorporating the dynamics of behaviour in infectious diseases models. Epidemics. 2015; 10:21–5. Challenges in Modelling Infectious DIsease Dynamics.CrossRefPubMed
10.
go back to reference Anderson RM, May RM, Anderson B. Infectious Diseases of Humans: Dynamics and Control. vol. 28. Oxford: Oxford University Press; 1992. Anderson RM, May RM, Anderson B. Infectious Diseases of Humans: Dynamics and Control. vol. 28. Oxford: Oxford University Press; 1992.
11.
go back to reference Lau LL, Cowling BJ, Fang VJ, Chan K-H, Lau EH, Lipsitch M, Cheng CK, Houck PM, Uyeki TM, Peiris JM, et al. Viral shedding and clinical illness in naturally acquired influenza virus infections. J Infect Dis. 2010; 201(10):1509–16.CrossRefPubMedPubMedCentral Lau LL, Cowling BJ, Fang VJ, Chan K-H, Lau EH, Lipsitch M, Cheng CK, Houck PM, Uyeki TM, Peiris JM, et al. Viral shedding and clinical illness in naturally acquired influenza virus infections. J Infect Dis. 2010; 201(10):1509–16.CrossRefPubMedPubMedCentral
12.
go back to reference Harris JM, Gwaltney JM. Incubation periods of experimental rhinovirus infection and illness. Clin Infect Dis. 1996; 23(6):1287–90.CrossRefPubMed Harris JM, Gwaltney JM. Incubation periods of experimental rhinovirus infection and illness. Clin Infect Dis. 1996; 23(6):1287–90.CrossRefPubMed
13.
go back to reference Van Kerckhove K, Hens N, Edmunds WJ, Eames KTD. The impact of illness on social networks: Implications for transmission and control of influenza. Am J Epidemiol. 2013; 178(11):1655.CrossRefPubMedPubMedCentral Van Kerckhove K, Hens N, Edmunds WJ, Eames KTD. The impact of illness on social networks: Implications for transmission and control of influenza. Am J Epidemiol. 2013; 178(11):1655.CrossRefPubMedPubMedCentral
14.
go back to reference Hart BL. Biological basis of the behavior of sick animals. Neurosci Biobehav Rev. 1988; 12(2):123–37.CrossRefPubMed Hart BL. Biological basis of the behavior of sick animals. Neurosci Biobehav Rev. 1988; 12(2):123–37.CrossRefPubMed
15.
go back to reference Aubert A. Sickness and behaviour in animals: a motivational perspective. Neurosci Biobehav Rev. 1999; 23(7):1029–36.CrossRefPubMed Aubert A. Sickness and behaviour in animals: a motivational perspective. Neurosci Biobehav Rev. 1999; 23(7):1029–36.CrossRefPubMed
16.
go back to reference Lopes PC. When is it socially acceptable to feel sick?Proc R Soc Lond B Biol Sci. 2014; 281(1788):20140218.CrossRef Lopes PC. When is it socially acceptable to feel sick?Proc R Soc Lond B Biol Sci. 2014; 281(1788):20140218.CrossRef
17.
go back to reference Shakhar K, Shakhar G. Why do we feel sick when infected can altruism play a role?PLoS Biol. 2015; 13(10):1–15.CrossRef Shakhar K, Shakhar G. Why do we feel sick when infected can altruism play a role?PLoS Biol. 2015; 13(10):1–15.CrossRef
18.
go back to reference Fraser C, Riley S, Anderson RM, Ferguson NM. Factors that make an infectious disease outbreak controllable. Proc Natl Acad Sci U S A. 2004; 101(16):6146–51.CrossRefPubMedPubMedCentral Fraser C, Riley S, Anderson RM, Ferguson NM. Factors that make an infectious disease outbreak controllable. Proc Natl Acad Sci U S A. 2004; 101(16):6146–51.CrossRefPubMedPubMedCentral
19.
go back to reference Fenichel EP, Castillo-Chavez C, Ceddia MG, Chowell G, Parra PAG, Hickling GJ, Holloway G, Horan R, Morin B, Perrings C, Springborn M, Velazquez L, Villalobos C. Adaptive human behavior in epidemiological models. Proc Natl Acad Sci. 2011; 108(15):6306–11.CrossRefPubMedPubMedCentral Fenichel EP, Castillo-Chavez C, Ceddia MG, Chowell G, Parra PAG, Hickling GJ, Holloway G, Horan R, Morin B, Perrings C, Springborn M, Velazquez L, Villalobos C. Adaptive human behavior in epidemiological models. Proc Natl Acad Sci. 2011; 108(15):6306–11.CrossRefPubMedPubMedCentral
20.
go back to reference Bansal S, Read J, Pourbohloul B, Meyers LA. The dynamic nature of contact networks in infectious disease epidemiology. J Biol Dyn. 2010; 4(5):478–89.CrossRefPubMed Bansal S, Read J, Pourbohloul B, Meyers LA. The dynamic nature of contact networks in infectious disease epidemiology. J Biol Dyn. 2010; 4(5):478–89.CrossRefPubMed
21.
go back to reference Scarpino SV, Allard A, Hébert-Dufresne L. The effect of a prudent adaptive behaviour on disease transmission. Nat Phys. 2016; 12(11):1042–6.CrossRef Scarpino SV, Allard A, Hébert-Dufresne L. The effect of a prudent adaptive behaviour on disease transmission. Nat Phys. 2016; 12(11):1042–6.CrossRef
22.
go back to reference Carrat F, Sahler C, Rogez S, Leruez-Ville M, Freymuth F, Le Gales C, Bungener M, Housset B, Nicolas M, Rouzioux C. Influenza burden of illness: estimates from a national prospective survey of household contacts in france. Arch Intern Med. 2002; 162(16):1842–8.CrossRefPubMed Carrat F, Sahler C, Rogez S, Leruez-Ville M, Freymuth F, Le Gales C, Bungener M, Housset B, Nicolas M, Rouzioux C. Influenza burden of illness: estimates from a national prospective survey of household contacts in france. Arch Intern Med. 2002; 162(16):1842–8.CrossRefPubMed
23.
go back to reference Carrat F, Vergu E, Ferguson NM, Lemaitre M, Cauchemez S, Leach S, Valleron A-J. Time lines of infection and disease in human influenza: a review of volunteer challenge studies: Oxford Univ Press; 2008. Carrat F, Vergu E, Ferguson NM, Lemaitre M, Cauchemez S, Leach S, Valleron A-J. Time lines of infection and disease in human influenza: a review of volunteer challenge studies: Oxford Univ Press; 2008.
24.
go back to reference Martinez-Bakker M, Helm B. The influence of biological rhythms on host parasite interactions. Trends Ecol Evol. 2015; 30(6):314–26.CrossRefPubMed Martinez-Bakker M, Helm B. The influence of biological rhythms on host parasite interactions. Trends Ecol Evol. 2015; 30(6):314–26.CrossRefPubMed
25.
go back to reference Edgar RS, Stangherlin A, Nagy AD, Nicoll MP, Efstathiou S, ONeill JS, Reddy AB. Cell autonomous regulation of herpes and influenza virus infection by the circadian clock. Proc Natl Acad Sci. 2016; 113(36):10085–90.CrossRefPubMedPubMedCentral Edgar RS, Stangherlin A, Nagy AD, Nicoll MP, Efstathiou S, ONeill JS, Reddy AB. Cell autonomous regulation of herpes and influenza virus infection by the circadian clock. Proc Natl Acad Sci. 2016; 113(36):10085–90.CrossRefPubMedPubMedCentral
26.
go back to reference Neagu IA, Olejarz J, Freeman M, Rosenbloom DIS, Nowak MA, Hill AL. Life cycle synchronization is a viral drug resistance mechanism. PLoS Comput Biol. 2018; 14(2):1–26.CrossRef Neagu IA, Olejarz J, Freeman M, Rosenbloom DIS, Nowak MA, Hill AL. Life cycle synchronization is a viral drug resistance mechanism. PLoS Comput Biol. 2018; 14(2):1–26.CrossRef
27.
go back to reference Bansal S, Pourbohloul B, Hupert N, Grenfell B, Meyers LA. The shifting demographic landscape of pandemic influenza. PLoS ONE. 2010; 5(2):9360.CrossRef Bansal S, Pourbohloul B, Hupert N, Grenfell B, Meyers LA. The shifting demographic landscape of pandemic influenza. PLoS ONE. 2010; 5(2):9360.CrossRef
28.
go back to reference Isella L, Stehlé J, Barrat A, Cattuto C, Pinton J-F, Van den Broeck W. What’s in a crowd? analysis of face-to-face behavioral networks. J Theor Biol. 2011; 271(1):166–80.CrossRefPubMed Isella L, Stehlé J, Barrat A, Cattuto C, Pinton J-F, Van den Broeck W. What’s in a crowd? analysis of face-to-face behavioral networks. J Theor Biol. 2011; 271(1):166–80.CrossRefPubMed
29.
go back to reference Vanhems P, Barrat A, Cattuto C, Pinton J-F, Khanafer N, R?gis C, Kim B-a, Comte B, Voirin N. Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PLoS ONE. 2013; 8(9):73970. Vanhems P, Barrat A, Cattuto C, Pinton J-F, Khanafer N, R?gis C, Kim B-a, Comte B, Voirin N. Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PLoS ONE. 2013; 8(9):73970.
30.
go back to reference Gemmetto V, Barrat A, Cattuto C. Mitigation of infectious disease at school: targeted class closure vs school closure. BMC Infect Dis. 2014; 14(1):695.CrossRefPubMedPubMedCentral Gemmetto V, Barrat A, Cattuto C. Mitigation of infectious disease at school: targeted class closure vs school closure. BMC Infect Dis. 2014; 14(1):695.CrossRefPubMedPubMedCentral
31.
go back to reference Stehl J, Voirin N, Barrat A, Cattuto C, Isella L, Pinton J, Quaggiotto M, Van den Broeck W, Rgis C, Lina B, Vanhems P. High-resolution measurements of face-to-face contact patterns in a primary school. PLoS ONE. 2011; 6(8):23176.CrossRef Stehl J, Voirin N, Barrat A, Cattuto C, Isella L, Pinton J, Quaggiotto M, Van den Broeck W, Rgis C, Lina B, Vanhems P. High-resolution measurements of face-to-face contact patterns in a primary school. PLoS ONE. 2011; 6(8):23176.CrossRef
32.
go back to reference Meyers LA, Pourbohloul B, Newman ME, Skowronski DM, Brunham RC. Network theory and sars: predicting outbreak diversity. J Theor Biol. 2005; 232(1):71–81.CrossRefPubMed Meyers LA, Pourbohloul B, Newman ME, Skowronski DM, Brunham RC. Network theory and sars: predicting outbreak diversity. J Theor Biol. 2005; 232(1):71–81.CrossRefPubMed
33.
go back to reference Holme P. Network reachability of real-world contact sequences. Phys Rev E. 2005; 71(4):046119.CrossRef Holme P. Network reachability of real-world contact sequences. Phys Rev E. 2005; 71(4):046119.CrossRef
34.
go back to reference Nicosia V, Tang J, Musolesi M, Russo G, Mascolo C, Latora V. Components in time-varying graphs. Chaos: Interdiscip J Nonlinear Sci. 2012; 22(2):023101.CrossRef Nicosia V, Tang J, Musolesi M, Russo G, Mascolo C, Latora V. Components in time-varying graphs. Chaos: Interdiscip J Nonlinear Sci. 2012; 22(2):023101.CrossRef
35.
36.
go back to reference Moody J. The importance of relationship timing for diffusion. Soc Forces. 2002; 81(1):25–56.CrossRef Moody J. The importance of relationship timing for diffusion. Soc Forces. 2002; 81(1):25–56.CrossRef
37.
go back to reference Koher A, Lentz HH, Hövel P, Sokolov IM. Infections on temporal networksa matrix-based approach. PloS ONE. 2016; 11(4):0151209.CrossRef Koher A, Lentz HH, Hövel P, Sokolov IM. Infections on temporal networksa matrix-based approach. PloS ONE. 2016; 11(4):0151209.CrossRef
38.
go back to reference Sartwell PE, et al. The distribution of incubation periods of infectious disease. American Journal of Hygiene. 1950; 51:310–8.PubMed Sartwell PE, et al. The distribution of incubation periods of infectious disease. American Journal of Hygiene. 1950; 51:310–8.PubMed
39.
go back to reference Leung NH, Xu C, Ip DK, Cowling BJ. Review Article: The Fraction of Influenza Virus Infections That Are Asymptomatic: A Systematic Review and Meta-analysis. NIH Public Access. 2015; 26(6):862–72. Leung NH, Xu C, Ip DK, Cowling BJ. Review Article: The Fraction of Influenza Virus Infections That Are Asymptomatic: A Systematic Review and Meta-analysis. NIH Public Access. 2015; 26(6):862–72.
41.
go back to reference Lessler J, Reich NG, Brookmeyer R, Perl TM, Nelson KE, Cummings DA. Incubation periods of acute respiratory viral infections: a systematic review. Lancet Infect Dis. 2009; 9(5):291–300.CrossRefPubMedPubMedCentral Lessler J, Reich NG, Brookmeyer R, Perl TM, Nelson KE, Cummings DA. Incubation periods of acute respiratory viral infections: a systematic review. Lancet Infect Dis. 2009; 9(5):291–300.CrossRefPubMedPubMedCentral
42.
go back to reference Bramley TJ, Lerner D, Sarnes M. Productivity losses related to the common cold. J Occup Environ Med. 2002; 44(9):822–9.CrossRefPubMed Bramley TJ, Lerner D, Sarnes M. Productivity losses related to the common cold. J Occup Environ Med. 2002; 44(9):822–9.CrossRefPubMed
43.
go back to reference Cori A, Valleron A, Carrat F, Tomba GS, Thomas G, Boëlle P. Estimating influenza latency and infectious period durations using viral excretion data. Epidemics. 2012; 4(3):132–8.CrossRefPubMed Cori A, Valleron A, Carrat F, Tomba GS, Thomas G, Boëlle P. Estimating influenza latency and infectious period durations using viral excretion data. Epidemics. 2012; 4(3):132–8.CrossRefPubMed
44.
go back to reference Leung NH, Xu C, Ip DK, Cowling BJ. The fraction of influenza virus infections that are asymptomatic: a systematic review and meta-analysis. Epidemiology (Camb, Mass). 2015; 26(6):862.CrossRef Leung NH, Xu C, Ip DK, Cowling BJ. The fraction of influenza virus infections that are asymptomatic: a systematic review and meta-analysis. Epidemiology (Camb, Mass). 2015; 26(6):862.CrossRef
45.
go back to reference Pellis L, Ferguson NM, Fraser C. Threshold parameters for a model of epidemic spread among households and workplaces. J R Soc Interface. 2009; 6(40):979–87.CrossRefPubMedPubMedCentral Pellis L, Ferguson NM, Fraser C. Threshold parameters for a model of epidemic spread among households and workplaces. J R Soc Interface. 2009; 6(40):979–87.CrossRefPubMedPubMedCentral
46.
go back to reference Ottino-Loffler B, Scott JG, Strogatz SH. Evolutionary dynamics of incubation periods. eLife. 2017; 6:30212.CrossRef Ottino-Loffler B, Scott JG, Strogatz SH. Evolutionary dynamics of incubation periods. eLife. 2017; 6:30212.CrossRef
47.
go back to reference Alizon S, Hurford A, Mideo N, Van Baalen M. Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future. J Evol Biol. 2009; 22(2):245–59.CrossRefPubMed Alizon S, Hurford A, Mideo N, Van Baalen M. Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future. J Evol Biol. 2009; 22(2):245–59.CrossRefPubMed
48.
go back to reference Canini L, Carrat F. Population modeling of influenza a/h1n1 virus kinetics and symptom dynamics. J Virol. 2011; 85(6):2764–70.CrossRefPubMed Canini L, Carrat F. Population modeling of influenza a/h1n1 virus kinetics and symptom dynamics. J Virol. 2011; 85(6):2764–70.CrossRefPubMed
49.
go back to reference Patrozou E, Mermel LA. Does influenza transmission occur from asymptomatic infection or prior to symptom onset?. Public Health Rep. 2009; 124(2):193–6.CrossRefPubMedPubMedCentral Patrozou E, Mermel LA. Does influenza transmission occur from asymptomatic infection or prior to symptom onset?. Public Health Rep. 2009; 124(2):193–6.CrossRefPubMedPubMedCentral
50.
go back to reference Perra N, Balcan D, Gonalves B, Vespignani A. Towards a characterization of behavior-disease models. PLoS ONE. 2011; 6(8):1–15.CrossRef Perra N, Balcan D, Gonalves B, Vespignani A. Towards a characterization of behavior-disease models. PLoS ONE. 2011; 6(8):1–15.CrossRef
51.
go back to reference Vink MA, Bootsma MCJ, Wallinga J. Serial intervals of respiratory infectious diseases: A systematic review and analysis. Am J Epidemiol. 2014; 180(9):865–75.CrossRefPubMed Vink MA, Bootsma MCJ, Wallinga J. Serial intervals of respiratory infectious diseases: A systematic review and analysis. Am J Epidemiol. 2014; 180(9):865–75.CrossRefPubMed
52.
go back to reference Cheung DH, Tsang TK, Fang VJ, Xu J, Chan K-H, Ip DK, Peiris JSM, Leung GM, Cowling BJ. Association of oseltamivir treatment with virus shedding, illness, and household transmission of influenza viruses. J Infect Dis. 2015; 212(3):391–6.CrossRefPubMedPubMedCentral Cheung DH, Tsang TK, Fang VJ, Xu J, Chan K-H, Ip DK, Peiris JSM, Leung GM, Cowling BJ. Association of oseltamivir treatment with virus shedding, illness, and household transmission of influenza viruses. J Infect Dis. 2015; 212(3):391–6.CrossRefPubMedPubMedCentral
Metadata
Title
The reachability of contagion in temporal contact networks: how disease latency can exploit the rhythm of human behavior
Authors
Ewan Colman
Kristen Spies
Shweta Bansal
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2018
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-018-3117-6

Other articles of this Issue 1/2018

BMC Infectious Diseases 1/2018 Go to the issue