Skip to main content
Top
Published in: BMC Infectious Diseases 1/2018

Open Access 01-12-2018 | Research article

Live attenuated Salmonella typhimurium vaccines delivering SaEsxA and SaEsxB via type III secretion system confer protection against Staphylococcus aureus infection

Authors: Chen Xu, Bao-zhong Zhang, Qiubin Lin, Jian Deng, Bin Yu, Smriti Arya, Kwok-Yung Yuen, Jian-Dong Huang

Published in: BMC Infectious Diseases | Issue 1/2018

Login to get access

Abstract

Background

Staphylococcus aureus (S. aureus) causes a wide range of infectious diseases in human and animals. The emergence of antibiotic-resistant strains demands novel strategies for prophylactic vaccine development. In this study, live attenuated S. enterica subsp. enterica serotype Typhimurium (S. Typhimurium) vaccine against S. aureus infection was developed, in which Salmonella Pathogenesis Island-1 Type 3 Secretion System (SPI-1 T3SS) was employed to deliver SaEsxA and SaEsxB, two of ESAT-6-like (Early Secreted Antigenic Target-6) virulence factors of S. aureus.

Methods

Antigens SaEsxA and SaEsxB were fused with the N-terminal secretion and translocation domain of SPI-1 effector SipA. And cytosolic delivery of Staphylococcal antigens into macrophages was examined by western blot. BALB/c mice were orally immunized with S. Typhimurium-SaEsxA and S. Typhimurium-SaEsxB vaccines. Antigen-specific humoral and Th1/Th17 immune responses were examined by ELISA and ELISPOT assays 7–9 days after the 2nd booster. For ELISPOT assays, the statistical significance was determined by Student’s t test. The vaccine efficacy was evaluated by lethal challenge with two S. aureus clinical isolates Newman strain and USA 300 strain. Statistical significance was determined by Log rank (Mantel-Cox) analysis. And a P value of < 0.05 was considered statistically significant.

Results

Oral administration of S. Typhimurium-SaEsxA and S. Typhimurium-SaEsxB vaccines induced antigen-specific humoral and Th1/Th17 immune responses, which increased the survival rate for vaccinated mice when challenged with S. aureus strains.

Conclusions

The newly developed S. Typhimurium-based vaccines delivering SaEsxA and SaEsxB by SPI-1 T3SS could confer protection against S. aureus infection. This study provides evidence that translocation of foreign antigens via Salmonella SPI-1 T3SS into the cytosol of antigen presenting cells (APCs) could induce potent immune responses against pathogens.
Appendix
Available only for authorised users
Literature
1.
go back to reference Chen LM, et al. Optimization of the delivery of heterologous proteins by the Salmonella enterica serovar typhimurium type III secretion system for vaccine development. Infect Immun. 2006;74(10):5826–33.CrossRefPubMedPubMedCentral Chen LM, et al. Optimization of the delivery of heterologous proteins by the Salmonella enterica serovar typhimurium type III secretion system for vaccine development. Infect Immun. 2006;74(10):5826–33.CrossRefPubMedPubMedCentral
2.
go back to reference Korea CG, et al. Staphylococcal Esx proteins modulate apoptosis and release of intracellular Staphylococcus aureus during infection in epithelial cells. Infect Immun. 2014;82(10):4144–53.CrossRefPubMedPubMedCentral Korea CG, et al. Staphylococcal Esx proteins modulate apoptosis and release of intracellular Staphylococcus aureus during infection in epithelial cells. Infect Immun. 2014;82(10):4144–53.CrossRefPubMedPubMedCentral
3.
go back to reference Kennedy AD, et al. Epidemic community-associated methicillin-resistant Staphylococcus aureus: recent clonal expansion and diversification. Proc Natl Acad Sci U S A. 2008;105(4):1327–32.CrossRefPubMedPubMedCentral Kennedy AD, et al. Epidemic community-associated methicillin-resistant Staphylococcus aureus: recent clonal expansion and diversification. Proc Natl Acad Sci U S A. 2008;105(4):1327–32.CrossRefPubMedPubMedCentral
4.
go back to reference Abrahamian FM, Moran GJ. Methicillin-resistant Staphylococcus aureus infections. N Engl J Med. 2007;357(20):2090. author reply 2090PubMed Abrahamian FM, Moran GJ. Methicillin-resistant Staphylococcus aureus infections. N Engl J Med. 2007;357(20):2090. author reply 2090PubMed
6.
go back to reference Datta R, Huang SS. Risk of infection and death due to methicillin-resistant Staphylococcus aureus in long-term carriers. Clin Infect Dis. 2008;47(2):176–81.CrossRefPubMedPubMedCentral Datta R, Huang SS. Risk of infection and death due to methicillin-resistant Staphylococcus aureus in long-term carriers. Clin Infect Dis. 2008;47(2):176–81.CrossRefPubMedPubMedCentral
7.
go back to reference Salgado-Pabon W, Schlievert PM. Models matter: the search for an effective Staphylococcus aureus vaccine. Nat Rev Microbiol. 2014;12(8):585–91.CrossRefPubMed Salgado-Pabon W, Schlievert PM. Models matter: the search for an effective Staphylococcus aureus vaccine. Nat Rev Microbiol. 2014;12(8):585–91.CrossRefPubMed
8.
go back to reference Shinefield H, et al. Use of a Staphylococcus aureus conjugate vaccine in patients receiving hemodialysis. N Engl J Med. 2002;346(7):491–6.CrossRefPubMed Shinefield H, et al. Use of a Staphylococcus aureus conjugate vaccine in patients receiving hemodialysis. N Engl J Med. 2002;346(7):491–6.CrossRefPubMed
9.
go back to reference Fowler VG, et al. Effect of an investigational vaccine for preventing Staphylococcus aureus infections after cardiothoracic surgery: a randomized trial. JAMA. 2013;309(13):1368–78.CrossRefPubMed Fowler VG, et al. Effect of an investigational vaccine for preventing Staphylococcus aureus infections after cardiothoracic surgery: a randomized trial. JAMA. 2013;309(13):1368–78.CrossRefPubMed
10.
go back to reference Weems, J.J., Jr., et al., Phase II, randomized, double-blind, multicenter study comparing the safety and pharmacokinetics of tefibazumab to placebo for treatment of Staphylococcus aureus bacteremia. Antimicrob Agents Chemother, 2006. 50(8): p. 2751–2755. Weems, J.J., Jr., et al., Phase II, randomized, double-blind, multicenter study comparing the safety and pharmacokinetics of tefibazumab to placebo for treatment of Staphylococcus aureus bacteremia. Antimicrob Agents Chemother, 2006. 50(8): p. 2751–2755.
11.
go back to reference DeJonge M, et al. Clinical trial of safety and efficacy of INH-A21 for the prevention of nosocomial staphylococcal bloodstream infection in premature infants. J Pediatr. 2007;151(3):260–5. 265 e1CrossRefPubMed DeJonge M, et al. Clinical trial of safety and efficacy of INH-A21 for the prevention of nosocomial staphylococcal bloodstream infection in premature infants. J Pediatr. 2007;151(3):260–5. 265 e1CrossRefPubMed
12.
go back to reference Ohlsen K, Lorenz U. Immunotherapeutic strategies to combat staphylococcal infections. Int J Med Microbiol. 2010;300(6):402–10.CrossRefPubMed Ohlsen K, Lorenz U. Immunotherapeutic strategies to combat staphylococcal infections. Int J Med Microbiol. 2010;300(6):402–10.CrossRefPubMed
13.
go back to reference Rupp ME, et al. Phase II, randomized, multicenter, double-blind, placebo-controlled trial of a polyclonal anti-Staphylococcus aureus capsular polysaccharide immune globulin in treatment of Staphylococcus aureus bacteremia. Antimicrob Agents Chemother. 2007;51(12):4249–54.CrossRefPubMedPubMedCentral Rupp ME, et al. Phase II, randomized, multicenter, double-blind, placebo-controlled trial of a polyclonal anti-Staphylococcus aureus capsular polysaccharide immune globulin in treatment of Staphylococcus aureus bacteremia. Antimicrob Agents Chemother. 2007;51(12):4249–54.CrossRefPubMedPubMedCentral
15.
go back to reference Proctor RA. Challenges for a universal Staphylococcus aureus vaccine. Clin Infect Dis. 2012;54(8):1179–86.CrossRefPubMed Proctor RA. Challenges for a universal Staphylococcus aureus vaccine. Clin Infect Dis. 2012;54(8):1179–86.CrossRefPubMed
17.
18.
go back to reference Spaulding AR, et al. Vaccination against Staphylococcus aureus pneumonia. J Infect Dis. 2014;209(12):1955–62.CrossRefPubMed Spaulding AR, et al. Vaccination against Staphylococcus aureus pneumonia. J Infect Dis. 2014;209(12):1955–62.CrossRefPubMed
19.
go back to reference Burts ML, et al. EsxA and EsxB are secreted by an ESAT-6-like system that is required for the pathogenesis of Staphylococcus aureus infections. Proc Natl Acad Sci U S A. 2005;102(4):1169–74.CrossRefPubMedPubMedCentral Burts ML, et al. EsxA and EsxB are secreted by an ESAT-6-like system that is required for the pathogenesis of Staphylococcus aureus infections. Proc Natl Acad Sci U S A. 2005;102(4):1169–74.CrossRefPubMedPubMedCentral
20.
go back to reference Andersen P, et al. Recall of long-lived immunity to Mycobacterium tuberculosis infection in mice. J Immunol. 1995;154(7):3359–72.PubMed Andersen P, et al. Recall of long-lived immunity to Mycobacterium tuberculosis infection in mice. J Immunol. 1995;154(7):3359–72.PubMed
21.
go back to reference Sorensen AL, et al. Purification and characterization of a low-molecular-mass T-cell antigen secreted by Mycobacterium tuberculosis. Infect Immun. 1995;63(5):1710–7.PubMedPubMedCentral Sorensen AL, et al. Purification and characterization of a low-molecular-mass T-cell antigen secreted by Mycobacterium tuberculosis. Infect Immun. 1995;63(5):1710–7.PubMedPubMedCentral
22.
go back to reference Zhang BZ, et al. Recombinant ESAT-6-like proteins provoke protective immune responses against invasive Staphylococcus aureus disease in a murine model. Infect Immun. 2015;83(1):339–45.CrossRefPubMed Zhang BZ, et al. Recombinant ESAT-6-like proteins provoke protective immune responses against invasive Staphylococcus aureus disease in a murine model. Infect Immun. 2015;83(1):339–45.CrossRefPubMed
23.
go back to reference Bagnoli F, et al. Vaccine composition formulated with a novel TLR7-dependent adjuvant induces high and broad protection against Staphylococcus aureus. Proc Natl Acad Sci U S A. 2015;112(12):3680–5.PubMedPubMedCentral Bagnoli F, et al. Vaccine composition formulated with a novel TLR7-dependent adjuvant induces high and broad protection against Staphylococcus aureus. Proc Natl Acad Sci U S A. 2015;112(12):3680–5.PubMedPubMedCentral
24.
go back to reference Monaci E, et al. MF59- and Al(OH)3-Adjuvanted Staphylococcus aureus (4C-staph) vaccines induce sustained protective humoral and cellular immune responses, with a critical role for effector CD4 T cells at low antibody titers. Front Immunol. 2015;6:439.CrossRefPubMedPubMedCentral Monaci E, et al. MF59- and Al(OH)3-Adjuvanted Staphylococcus aureus (4C-staph) vaccines induce sustained protective humoral and cellular immune responses, with a critical role for effector CD4 T cells at low antibody titers. Front Immunol. 2015;6:439.CrossRefPubMedPubMedCentral
25.
go back to reference Mancini F, et al. One dose of Staphylococcus aureus 4C-staph vaccine formulated with a novel TLR7-dependent adjuvant rapidly protects mice through antibodies, effector CD4+ T cells, and IL-17A. PLoS One. 2016;11(1):e0147767.CrossRefPubMedPubMedCentral Mancini F, et al. One dose of Staphylococcus aureus 4C-staph vaccine formulated with a novel TLR7-dependent adjuvant rapidly protects mice through antibodies, effector CD4+ T cells, and IL-17A. PLoS One. 2016;11(1):e0147767.CrossRefPubMedPubMedCentral
26.
go back to reference Zheng SY, et al. Comparative immunological evaluation of recombinant Salmonella typhimurium strains expressing model antigens as live oral vaccines. BMC Immunol. 2012;13:54.CrossRefPubMedPubMedCentral Zheng SY, et al. Comparative immunological evaluation of recombinant Salmonella typhimurium strains expressing model antigens as live oral vaccines. BMC Immunol. 2012;13:54.CrossRefPubMedPubMedCentral
27.
go back to reference Russmann H, et al. Delivery of epitopes by the Salmonella type III secretion system for vaccine development. Science. 1998;281(5376):565–8.CrossRefPubMed Russmann H, et al. Delivery of epitopes by the Salmonella type III secretion system for vaccine development. Science. 1998;281(5376):565–8.CrossRefPubMed
28.
go back to reference Konjufca V, et al. A recombinant attenuated Salmonella enterica serovar typhimurium vaccine encoding Eimeria acervulina antigen offers protection against E. Acervulina challenge. Infect Immun. 2006;74(12):6785–96.CrossRefPubMedPubMedCentral Konjufca V, et al. A recombinant attenuated Salmonella enterica serovar typhimurium vaccine encoding Eimeria acervulina antigen offers protection against E. Acervulina challenge. Infect Immun. 2006;74(12):6785–96.CrossRefPubMedPubMedCentral
29.
go back to reference Russmann H, et al. Protection against murine listeriosis by oral vaccination with recombinant Salmonella expressing hybrid Yersinia type III proteins. J Immunol. 2001;167(1):357–65.CrossRefPubMed Russmann H, et al. Protection against murine listeriosis by oral vaccination with recombinant Salmonella expressing hybrid Yersinia type III proteins. J Immunol. 2001;167(1):357–65.CrossRefPubMed
30.
go back to reference Shams H, et al. Induction of specific CD8+ memory T cells and long lasting protection following immunization with Salmonella typhimurium expressing a lymphocytic choriomeningitis MHC class I-restricted epitope. Vaccine. 2001;20(3–4):577–85.CrossRefPubMed Shams H, et al. Induction of specific CD8+ memory T cells and long lasting protection following immunization with Salmonella typhimurium expressing a lymphocytic choriomeningitis MHC class I-restricted epitope. Vaccine. 2001;20(3–4):577–85.CrossRefPubMed
31.
go back to reference Evans DT, et al. Mucosal priming of simian immunodeficiency virus-specific cytotoxic T-lymphocyte responses in rhesus macaques by the Salmonella type III secretion antigen delivery system. J Virol. 2003;77(4):2400–9.CrossRefPubMedPubMedCentral Evans DT, et al. Mucosal priming of simian immunodeficiency virus-specific cytotoxic T-lymphocyte responses in rhesus macaques by the Salmonella type III secretion antigen delivery system. J Virol. 2003;77(4):2400–9.CrossRefPubMedPubMedCentral
32.
go back to reference Singer HM, et al. Selective purification of recombinant neuroactive peptides using the flagellar type III secretion system. MBio. 2012;3(3) Singer HM, et al. Selective purification of recombinant neuroactive peptides using the flagellar type III secretion system. MBio. 2012;3(3)
33.
go back to reference Darwin KH, Miller VL. Molecular basis of the interaction of Salmonella with the intestinal mucosa. Clin Microbiol Rev. 1999;12(3):405–28.PubMedPubMedCentral Darwin KH, Miller VL. Molecular basis of the interaction of Salmonella with the intestinal mucosa. Clin Microbiol Rev. 1999;12(3):405–28.PubMedPubMedCentral
34.
go back to reference Georgiou G, Segatori L. Preparative expression of secreted proteins in bacteria: status report and future prospects. Curr Opin Biotechnol. 2005;16(5):538–45.CrossRefPubMed Georgiou G, Segatori L. Preparative expression of secreted proteins in bacteria: status report and future prospects. Curr Opin Biotechnol. 2005;16(5):538–45.CrossRefPubMed
35.
go back to reference Wickner W, Schekman R. Protein translocation across biological membranes. Science. 2005;310(5753):1452–6.CrossRefPubMed Wickner W, Schekman R. Protein translocation across biological membranes. Science. 2005;310(5753):1452–6.CrossRefPubMed
37.
go back to reference Lee CA, et al. A secreted Salmonella protein induces a proinflammatory response in epithelial cells, which promotes neutrophil migration. Proc Natl Acad Sci U S A. 2000;97(22):12283–8.CrossRefPubMedPubMedCentral Lee CA, et al. A secreted Salmonella protein induces a proinflammatory response in epithelial cells, which promotes neutrophil migration. Proc Natl Acad Sci U S A. 2000;97(22):12283–8.CrossRefPubMedPubMedCentral
38.
go back to reference Criss AK, et al. Regulation of Salmonella-induced neutrophil transmigration by epithelial ADP-ribosylation factor 6. J Biol Chem. 2001;276(51):48431–9.CrossRefPubMed Criss AK, et al. Regulation of Salmonella-induced neutrophil transmigration by epithelial ADP-ribosylation factor 6. J Biol Chem. 2001;276(51):48431–9.CrossRefPubMed
39.
go back to reference Silva M, et al. Salmonella typhimurium SipA-induced neutrophil transepithelial migration: involvement of a PKC-alpha-dependent signal transduction pathway. Am J Physiol Gastrointest Liver Physiol. 2004;286(6):G1024–31.CrossRefPubMed Silva M, et al. Salmonella typhimurium SipA-induced neutrophil transepithelial migration: involvement of a PKC-alpha-dependent signal transduction pathway. Am J Physiol Gastrointest Liver Physiol. 2004;286(6):G1024–31.CrossRefPubMed
40.
go back to reference Zhou D, Mooseker MS, Galan JE. Role of the S. Typhimurium actin-binding protein SipA in bacterial internalization. Science. 1999;283(5410):2092–5.CrossRefPubMed Zhou D, Mooseker MS, Galan JE. Role of the S. Typhimurium actin-binding protein SipA in bacterial internalization. Science. 1999;283(5410):2092–5.CrossRefPubMed
41.
go back to reference Zhou D, Mooseker MS, Galan JE. An invasion-associated Salmonella protein modulates the actin-bundling activity of plastin. Proc Natl Acad Sci U S A. 1999;96(18):10176–81.CrossRefPubMedPubMedCentral Zhou D, Mooseker MS, Galan JE. An invasion-associated Salmonella protein modulates the actin-bundling activity of plastin. Proc Natl Acad Sci U S A. 1999;96(18):10176–81.CrossRefPubMedPubMedCentral
42.
go back to reference Hoiseth SK, Stocker BA. Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature. 1981;291(5812):238–9.CrossRefPubMed Hoiseth SK, Stocker BA. Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature. 1981;291(5812):238–9.CrossRefPubMed
43.
go back to reference Yu B, et al. A method to generate recombinant Salmonella typhi Ty21a strains expressing multiple heterologous genes using an improved recombineering strategy. Appl Microbiol Biotechnol. 2011;91(1):177–88.CrossRefPubMed Yu B, et al. A method to generate recombinant Salmonella typhi Ty21a strains expressing multiple heterologous genes using an improved recombineering strategy. Appl Microbiol Biotechnol. 2011;91(1):177–88.CrossRefPubMed
44.
go back to reference Collazo CM, Galan JE. The invasion-associated type III system of Salmonella typhimurium directs the translocation of sip proteins into the host cell. Mol Microbiol. 1997;24(4):747–56.CrossRefPubMed Collazo CM, Galan JE. The invasion-associated type III system of Salmonella typhimurium directs the translocation of sip proteins into the host cell. Mol Microbiol. 1997;24(4):747–56.CrossRefPubMed
45.
go back to reference Stone GW, et al. Multimeric soluble CD40 ligand and GITR ligand as adjuvants for human immunodeficiency virus DNA vaccines. J Virol. 2006;80(4):1762–72.CrossRefPubMedPubMedCentral Stone GW, et al. Multimeric soluble CD40 ligand and GITR ligand as adjuvants for human immunodeficiency virus DNA vaccines. J Virol. 2006;80(4):1762–72.CrossRefPubMedPubMedCentral
46.
go back to reference Cardenal-Munoz E, Ramos-Morales F. Analysis of the expression, secretion and translocation of the Salmonella enterica type III secretion system effector SteA. PLoS One. 2011;6(10):e26930.CrossRefPubMedPubMedCentral Cardenal-Munoz E, Ramos-Morales F. Analysis of the expression, secretion and translocation of the Salmonella enterica type III secretion system effector SteA. PLoS One. 2011;6(10):e26930.CrossRefPubMedPubMedCentral
47.
go back to reference Dunstan SJ, Simmons CP, Strugnell RA. Use of in vivo-regulated promoters to deliver antigens from attenuated Salmonella enterica var. Typhimurium. Infect Immun. 1999;67(10):5133–41.PubMedPubMedCentral Dunstan SJ, Simmons CP, Strugnell RA. Use of in vivo-regulated promoters to deliver antigens from attenuated Salmonella enterica var. Typhimurium. Infect Immun. 1999;67(10):5133–41.PubMedPubMedCentral
48.
go back to reference Kubori T, Galan JE. Salmonella type III secretion-associated protein InvE controls translocation of effector proteins into host cells. J Bacteriol. 2002;184(17):4699–708.CrossRefPubMedPubMedCentral Kubori T, Galan JE. Salmonella type III secretion-associated protein InvE controls translocation of effector proteins into host cells. J Bacteriol. 2002;184(17):4699–708.CrossRefPubMedPubMedCentral
50.
go back to reference Lin L, et al. Th1-Th17 cells mediate protective adaptive immunity against Staphylococcus aureus and Candida albicans infection in mice. PLoS Pathog. 2009;5(12):e1000703.CrossRefPubMedPubMedCentral Lin L, et al. Th1-Th17 cells mediate protective adaptive immunity against Staphylococcus aureus and Candida albicans infection in mice. PLoS Pathog. 2009;5(12):e1000703.CrossRefPubMedPubMedCentral
51.
go back to reference Misstear K, et al. Targeted nasal vaccination provides antibody-independent protection against Staphylococcus aureus. J Infect Dis. 2014;209(9):1479–84.CrossRefPubMed Misstear K, et al. Targeted nasal vaccination provides antibody-independent protection against Staphylococcus aureus. J Infect Dis. 2014;209(9):1479–84.CrossRefPubMed
53.
go back to reference Pathangey L, et al. Effect of expression level on immune responses to recombinant oral Salmonella enterica serovar typhimurium vaccines. Vaccine. 2009;27(20):2707–11.CrossRefPubMedPubMedCentral Pathangey L, et al. Effect of expression level on immune responses to recombinant oral Salmonella enterica serovar typhimurium vaccines. Vaccine. 2009;27(20):2707–11.CrossRefPubMedPubMedCentral
54.
go back to reference Juarez-Rodriguez MD, et al. Live attenuated Salmonella vaccines displaying regulated delayed lysis and delayed antigen synthesis to confer protection against Mycobacterium tuberculosis. Infect Immun. 2012;80(2):815–31.CrossRefPubMedPubMedCentral Juarez-Rodriguez MD, et al. Live attenuated Salmonella vaccines displaying regulated delayed lysis and delayed antigen synthesis to confer protection against Mycobacterium tuberculosis. Infect Immun. 2012;80(2):815–31.CrossRefPubMedPubMedCentral
55.
go back to reference Cooper AM, et al. Disseminated tuberculosis in interferon gamma gene-disrupted mice. J Exp Med. 1993;178(6):2243–7.CrossRefPubMed Cooper AM, et al. Disseminated tuberculosis in interferon gamma gene-disrupted mice. J Exp Med. 1993;178(6):2243–7.CrossRefPubMed
56.
go back to reference Flynn JL, et al. An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med. 1993;178(6):2249–54.CrossRefPubMed Flynn JL, et al. An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med. 1993;178(6):2249–54.CrossRefPubMed
57.
59.
go back to reference Kubica M, et al. A potential new pathway for Staphylococcus aureus dissemination: the silent survival of S. Aureus phagocytosed by human monocyte-derived macrophages. PLoS One. 2008;3(1):e1409.CrossRefPubMedPubMedCentral Kubica M, et al. A potential new pathway for Staphylococcus aureus dissemination: the silent survival of S. Aureus phagocytosed by human monocyte-derived macrophages. PLoS One. 2008;3(1):e1409.CrossRefPubMedPubMedCentral
60.
go back to reference Paul WE. Cell-mediated cytotoxicity. Fundamental immunology. 7th ed; 2012. Paul WE. Cell-mediated cytotoxicity. Fundamental immunology. 7th ed; 2012.
61.
go back to reference Broker BM, Mrochen D, Peton V. The T cell response to Staphylococcus aureus. Pathogens. 2016;5(1) Broker BM, Mrochen D, Peton V. The T cell response to Staphylococcus aureus. Pathogens. 2016;5(1)
63.
go back to reference Hsu HC, et al. Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nat Immunol. 2008;9(2):166–75.CrossRefPubMed Hsu HC, et al. Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nat Immunol. 2008;9(2):166–75.CrossRefPubMed
64.
65.
go back to reference Islander U, et al. Superantigenic Staphylococcus aureus stimulates production of interleukin-17 from memory but not naive T cells. Infect Immun. 2010;78(1):381–6.CrossRefPubMed Islander U, et al. Superantigenic Staphylococcus aureus stimulates production of interleukin-17 from memory but not naive T cells. Infect Immun. 2010;78(1):381–6.CrossRefPubMed
Metadata
Title
Live attenuated Salmonella typhimurium vaccines delivering SaEsxA and SaEsxB via type III secretion system confer protection against Staphylococcus aureus infection
Authors
Chen Xu
Bao-zhong Zhang
Qiubin Lin
Jian Deng
Bin Yu
Smriti Arya
Kwok-Yung Yuen
Jian-Dong Huang
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2018
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-018-3104-y

Other articles of this Issue 1/2018

BMC Infectious Diseases 1/2018 Go to the issue