Skip to main content
Top
Published in: BMC Infectious Diseases 1/2018

Open Access 01-12-2018 | Research article

MDR1 overexpression combined with ERG11 mutations induce high-level fluconazole resistance in Candida tropicalis clinical isolates

Authors: Longyang Jin, Zhuorui Cao, Qi Wang, Yichen Wang, Xiaojuan Wang, Hongbin Chen, Hui Wang

Published in: BMC Infectious Diseases | Issue 1/2018

Login to get access

Abstract

Background

Marked increases in fluconazole resistance in Candida tropicalis have been recently reported. In this study, the molecular mechanisms behind fluconazole resistance were investigated.

Methods

Twenty-two C. tropicalis clinical isolates, including 12 fluconazole-resistant isolates and 10 fluconazole-susceptible isolates, were collected from a tertiary care teaching hospital in Beijing between 2013 and 2017. Antifungal susceptibility testing, multilocus sequence typing, ERG11 amplification and sequencing, quantitative real-time reverse transcription-polymerase chain reaction (ERG11, UPC2, MDR1, and CDR1), and clinical data collection were performed for all C. tropicalis isolates.

Results

Multilocus sequence typing revealed that the 10 fluconazole-susceptible isolates and 12 fluconazole-resistant isolates were divided into nine and seven diploid sequence types, respectively. Of the 12 patients with fluconazole-resistant isolates, six had been previously exposed to azole and four had a fatal outcome. Y132F and S154F amino acid substitutions in Erg11p were found in all fluconazole-resistant isolates except one. MDR1 gene overexpression was identified in fluconazole-resistant isolates. In particular, seven high-level fluconazole resistant isolates (minimum inhibitory concentration ≥ 128 mg/L) and three pan-azole resistant isolates were identified. CDR1, ERG11, and UPC2 gene expression levels in fluconazole-resistant isolates were not significantly different from the control isolates (P = 0.262, P = 0.598, P = 0.114, respectively).

Conclusions

This study provides evidence that the combination of MDR1 gene overexpression and ERG11 missense mutations is responsible for high-level fluconazole resistance and pan-azole resistance in C. tropicalis clinical isolates. To the best of our knowledge, this is the first study investigating the relationship between MDR1 gene overexpression and increased fluconazole resistance.
Literature
1.
go back to reference Perlin DS, Rautemaa-Richardson R, Alastruey-Izquierdo A. The global problem of antifungal resistance: prevalence, mechanisms, and management. Lancet Infect Dis. 2017;17(12):e383–92.CrossRefPubMed Perlin DS, Rautemaa-Richardson R, Alastruey-Izquierdo A. The global problem of antifungal resistance: prevalence, mechanisms, and management. Lancet Infect Dis. 2017;17(12):e383–92.CrossRefPubMed
2.
go back to reference Wu PF, Liu WL, Hsieh MH, et al. Epidemiology and antifungal susceptibility of candidemia isolates of non-albicans Candida species from cancer patients. Emerg Microbes Infect. 2017;6(10):e87.CrossRefPubMedPubMedCentral Wu PF, Liu WL, Hsieh MH, et al. Epidemiology and antifungal susceptibility of candidemia isolates of non-albicans Candida species from cancer patients. Emerg Microbes Infect. 2017;6(10):e87.CrossRefPubMedPubMedCentral
3.
go back to reference Lortholary O, Renaudat C, Sitbon K, et al. The risk and clinical outcome of candidemia depending on underlying malignancy. Intensive Care Med. 2017;43(5):652–62.CrossRefPubMedPubMedCentral Lortholary O, Renaudat C, Sitbon K, et al. The risk and clinical outcome of candidemia depending on underlying malignancy. Intensive Care Med. 2017;43(5):652–62.CrossRefPubMedPubMedCentral
4.
go back to reference Liu W, Tan J, Sun J, et al. Invasive candidiasis in intensive care units in China: in vitro antifungal susceptibility in the China-SCAN study. J Antimicrob Chemother. 2014;69(1):162–7.CrossRefPubMed Liu W, Tan J, Sun J, et al. Invasive candidiasis in intensive care units in China: in vitro antifungal susceptibility in the China-SCAN study. J Antimicrob Chemother. 2014;69(1):162–7.CrossRefPubMed
6.
go back to reference Ou HT, Lee TY, Chen YC, et al. Pharmacoeconomic analysis of antifungal therapy for primary treatment of invasive candidiasis caused by Candida albicans and non-albicans Candida species. BMC Infect Dis. 2017;17:481.CrossRefPubMedPubMedCentral Ou HT, Lee TY, Chen YC, et al. Pharmacoeconomic analysis of antifungal therapy for primary treatment of invasive candidiasis caused by Candida albicans and non-albicans Candida species. BMC Infect Dis. 2017;17:481.CrossRefPubMedPubMedCentral
7.
go back to reference Fan X, Xiao M, Liao K, et al. Notable increasing trend in azole non-susceptible Candida tropicalis causing invasive candidiasis in China (August 2009 to July 2014): molecular epidemiology and clinical azole consumption. Front Microbiol. 2017;8:464.PubMedPubMedCentral Fan X, Xiao M, Liao K, et al. Notable increasing trend in azole non-susceptible Candida tropicalis causing invasive candidiasis in China (August 2009 to July 2014): molecular epidemiology and clinical azole consumption. Front Microbiol. 2017;8:464.PubMedPubMedCentral
8.
go back to reference You L, Qian W, Yang Q, et al. ERG11 gene mutations and MDR1 upregulation confer pan-azole resistance in Candida tropicalis causing disseminated candidiasis in an acute lymphoblastic leukemia patient on posaconazole prophylaxis. Antimicrob Agents Chemother. 2017;61(7):e02496–16.CrossRefPubMedPubMedCentral You L, Qian W, Yang Q, et al. ERG11 gene mutations and MDR1 upregulation confer pan-azole resistance in Candida tropicalis causing disseminated candidiasis in an acute lymphoblastic leukemia patient on posaconazole prophylaxis. Antimicrob Agents Chemother. 2017;61(7):e02496–16.CrossRefPubMedPubMedCentral
9.
go back to reference Xisto MI, Caramalho RD, Rocha DA, et al. Pan-azole-resistant Candida tropicalis carrying homozygous erg11 mutations at position K143R: a new emerging superbug? J Antimicrob Chemother. 2017;72(4):988–92.PubMed Xisto MI, Caramalho RD, Rocha DA, et al. Pan-azole-resistant Candida tropicalis carrying homozygous erg11 mutations at position K143R: a new emerging superbug? J Antimicrob Chemother. 2017;72(4):988–92.PubMed
10.
go back to reference Álvarez-Pérez S, García ME, Cutuli MT, et al. Acquired multi-azole resistance in Candida tropicalis during persistent urinary tract infection in a dog. Med Mycol Case Rep. 2016;11:9–12.CrossRefPubMedPubMedCentral Álvarez-Pérez S, García ME, Cutuli MT, et al. Acquired multi-azole resistance in Candida tropicalis during persistent urinary tract infection in a dog. Med Mycol Case Rep. 2016;11:9–12.CrossRefPubMedPubMedCentral
11.
go back to reference Wang Y, Yang Q, Chen L, et al. Cross-resistance between voriconazole and fluconazole for non-albicans Candida infection: a case-case-control study. Eur J Clin Microbiol Infect Dis. 2017;36(11):2117–26.CrossRefPubMed Wang Y, Yang Q, Chen L, et al. Cross-resistance between voriconazole and fluconazole for non-albicans Candida infection: a case-case-control study. Eur J Clin Microbiol Infect Dis. 2017;36(11):2117–26.CrossRefPubMed
12.
go back to reference Barchiesi F, Calabrese D, Sanglard D, et al. Experimental induction of fluconazole resistance in Candida tropicalis ATCC 750. Antimicrob Agents Chemother. 2000;44(6):1578–84.CrossRefPubMedPubMedCentral Barchiesi F, Calabrese D, Sanglard D, et al. Experimental induction of fluconazole resistance in Candida tropicalis ATCC 750. Antimicrob Agents Chemother. 2000;44(6):1578–84.CrossRefPubMedPubMedCentral
13.
go back to reference Choi MJ, Won EJ, Shin JH, et al. Resistance mechanisms and clinical features of fluconazole-nonsusceptible Candida tropicalis isolates compared with fluconazole-less-susceptible isolates. Antimicrob Agents Chemother. 2016;60(6):3653–61.CrossRefPubMedPubMedCentral Choi MJ, Won EJ, Shin JH, et al. Resistance mechanisms and clinical features of fluconazole-nonsusceptible Candida tropicalis isolates compared with fluconazole-less-susceptible isolates. Antimicrob Agents Chemother. 2016;60(6):3653–61.CrossRefPubMedPubMedCentral
14.
go back to reference Jiang C, Dong D, Yu B, et al. Mechanisms of azole resistance in 52 clinical isolates of Candida tropicalis in China. J Antimicrob Chemother. 2013;68(4):778–85.CrossRefPubMed Jiang C, Dong D, Yu B, et al. Mechanisms of azole resistance in 52 clinical isolates of Candida tropicalis in China. J Antimicrob Chemother. 2013;68(4):778–85.CrossRefPubMed
15.
go back to reference Pfaller MA, Diekema DJ. Progress in antifungal susceptibility testing of Candida spp. by use of clinical and laboratory standards institute broth microdilution methods, 2010 to 2012. J Clin Microbiol. 2012;50(9):2846–56.CrossRefPubMedPubMedCentral Pfaller MA, Diekema DJ. Progress in antifungal susceptibility testing of Candida spp. by use of clinical and laboratory standards institute broth microdilution methods, 2010 to 2012. J Clin Microbiol. 2012;50(9):2846–56.CrossRefPubMedPubMedCentral
16.
go back to reference Tavanti A, Davidson AD, Johnson EM, et al. Multilocus sequence typing for differentiation of strains of Candida tropicalis. J Clin Microbiol. 2005;43(11):5593–60.CrossRefPubMedPubMedCentral Tavanti A, Davidson AD, Johnson EM, et al. Multilocus sequence typing for differentiation of strains of Candida tropicalis. J Clin Microbiol. 2005;43(11):5593–60.CrossRefPubMedPubMedCentral
17.
go back to reference Jiang C, Ni Q, Dong D, et al. The role of UPC2 gene in azole-resistant Candida tropicalis. Mycopathologia. 2016;181(11–12):833–8.CrossRefPubMed Jiang C, Ni Q, Dong D, et al. The role of UPC2 gene in azole-resistant Candida tropicalis. Mycopathologia. 2016;181(11–12):833–8.CrossRefPubMed
18.
go back to reference Chapman B, Slavin M, Marriott D, et al. Changing epidemiology of candidaemia in Australia. J Antimicrob Chemother. 2017;72(4):1103–8.CrossRefPubMed Chapman B, Slavin M, Marriott D, et al. Changing epidemiology of candidaemia in Australia. J Antimicrob Chemother. 2017;72(4):1103–8.CrossRefPubMed
19.
go back to reference Castanheira M, Messer SA, Rhomberg PR, et al. Antifungal susceptibility patterns of a global collection of fungal isolates: results of the SENTRY antifungal surveillance program (2013). Diagn Microbiol Infect Dis. 2016;85(2):200–4.CrossRefPubMed Castanheira M, Messer SA, Rhomberg PR, et al. Antifungal susceptibility patterns of a global collection of fungal isolates: results of the SENTRY antifungal surveillance program (2013). Diagn Microbiol Infect Dis. 2016;85(2):200–4.CrossRefPubMed
20.
go back to reference Forastiero A, Mesa-Arango AC, Alastruey-Izquiredo A, et al. Candida tropicalis antifungal cross-resistance is related to different azole target (Erg11p) modifications. Antimicrob Agents Chemother. 2013;57(10):4769–81.CrossRefPubMedPubMedCentral Forastiero A, Mesa-Arango AC, Alastruey-Izquiredo A, et al. Candida tropicalis antifungal cross-resistance is related to different azole target (Erg11p) modifications. Antimicrob Agents Chemother. 2013;57(10):4769–81.CrossRefPubMedPubMedCentral
21.
go back to reference Tan J, Zhang J, Chen W, et al. The A395T mutation in ERG11 gene confers fluconazole resistance in Candida tropicalis causing candidemia. Mycopathologia. 2015;179(3–4):213–8.CrossRefPubMed Tan J, Zhang J, Chen W, et al. The A395T mutation in ERG11 gene confers fluconazole resistance in Candida tropicalis causing candidemia. Mycopathologia. 2015;179(3–4):213–8.CrossRefPubMed
22.
go back to reference Whaley SG, Berkow EL, Rybak JM, et al. Azole antifungal resistance in Candida albicans and emerging non-albicans Candida species. Front Microbiol. 2017;7:2173.CrossRefPubMedPubMedCentral Whaley SG, Berkow EL, Rybak JM, et al. Azole antifungal resistance in Candida albicans and emerging non-albicans Candida species. Front Microbiol. 2017;7:2173.CrossRefPubMedPubMedCentral
23.
go back to reference Lo H-J, Tsai S-H, Chu W-L, et al. Fruits as the vehicle of drug resistant pathogenic yeasts. J Inf Secur. 2017;75(3):254–62. Lo H-J, Tsai S-H, Chu W-L, et al. Fruits as the vehicle of drug resistant pathogenic yeasts. J Inf Secur. 2017;75(3):254–62.
24.
go back to reference Branco J, Silva AP, Silva RM, et al. Fluconazole and voriconazole resistance in Candida parapsilosis is conferred by gain-of-function mutations in MRR1 transcription factor gene. Antimicrob Agents Chemother. 2015;59(10):6629–33.CrossRefPubMedPubMedCentral Branco J, Silva AP, Silva RM, et al. Fluconazole and voriconazole resistance in Candida parapsilosis is conferred by gain-of-function mutations in MRR1 transcription factor gene. Antimicrob Agents Chemother. 2015;59(10):6629–33.CrossRefPubMedPubMedCentral
Metadata
Title
MDR1 overexpression combined with ERG11 mutations induce high-level fluconazole resistance in Candida tropicalis clinical isolates
Authors
Longyang Jin
Zhuorui Cao
Qi Wang
Yichen Wang
Xiaojuan Wang
Hongbin Chen
Hui Wang
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2018
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-018-3082-0

Other articles of this Issue 1/2018

BMC Infectious Diseases 1/2018 Go to the issue