Skip to main content
Top
Published in: BMC Infectious Diseases 1/2018

Open Access 01-12-2018 | Research article

Effect of Lactobacillus rhamnosus HN001 on carriage of Staphylococcus aureus: results of the impact of probiotics for reducing infections in veterans (IMPROVE) study

Authors: Shoshannah Eggers, Anna K. Barker, Susan Valentine, Timothy Hess, Megan Duster, Nasia Safdar

Published in: BMC Infectious Diseases | Issue 1/2018

Login to get access

Abstract

Background

Infection by Staphylococcus aureus (S. aureus) is a major cause of morbidity and mortality. Colonization by S. aureus increases the risk of infection. Little is known about decolonization strategies for S. aureus beyond antibiotics, however probiotics represent a promising alternative. A randomized controlled trial was conducted to determine the efficacy of Lactobacillus rhamnosus (L. rhamnosus) HN001 in reducing carriage of S. aureus at multiple body sites.

Methods

One hundred thirteen subjects, positive for S. aureus carriage, were recruited from the William S. Middleton Memorial Medical Center, Madison, WI, USA, and randomized by initial site of colonization, either gastrointestinal (GI) or extra-GI, to 4-weeks of oral L. rhamnosus HN001 probiotic, or placebo. Nasal, oropharyngeal, and axillary/groin swabs were obtained, and serial blood and fecal samples were collected. Differences in prevalence of S. aureus carriage at the end of the 4-weeks of treatment were assessed.

Results

The probiotic and placebo groups were similar in age, gender, and health history at baseline. S. aureus colonization within the stool samples of the extra-GI group was 15% lower in the probiotic than placebo group at the endpoint of the trial. Those in the probiotic group compared to the placebo group had 73% reduced odds (OR 0.27, 95% CI 0.07–0.98) of methicillin-susceptible S. aureus presence, and 83% reduced odds (OR 0.17, 95% CI 0.04–0.73) of any S. aureus presence in the stool sample at endpoint.

Conclusion

Use of daily oral L. rhamnosus HN001 reduced odds of carriage of S. aureus in the GI tract, however it did not eradicate S. aureus from other body sites.

Trial registration

ClinicalTrials.gov Identifier: NCT01321606. Registered March 21, 2011.
Appendix
Available only for authorised users
Literature
2.
go back to reference Roghmann M-C, Siddiqui A, Plaisance K, Standiford H. MRSA colonization and the risk of MRSA bacteraemia in hospitalized patients with chronic ulcers. J Hosp Infect. 2001;47:98–103.CrossRefPubMed Roghmann M-C, Siddiqui A, Plaisance K, Standiford H. MRSA colonization and the risk of MRSA bacteraemia in hospitalized patients with chronic ulcers. J Hosp Infect. 2001;47:98–103.CrossRefPubMed
3.
go back to reference Safdar N, Bradley EA. The risk of infection after nasal colonization with staphylococcus aureus. Am J Med. 2008;121:310–5.CrossRefPubMed Safdar N, Bradley EA. The risk of infection after nasal colonization with staphylococcus aureus. Am J Med. 2008;121:310–5.CrossRefPubMed
4.
go back to reference Eveillard M, de Lassence A, Lancien E, Barnaud G, Ricard J, Joly-Guillou M. Evaluation of a strategy of screening multiple anatomical sites for methicillin-resistant Staphylococcus aureus at admission to a teaching hospital. Infect Control Hosp Epidemiol. 2006;27:181–4.CrossRefPubMed Eveillard M, de Lassence A, Lancien E, Barnaud G, Ricard J, Joly-Guillou M. Evaluation of a strategy of screening multiple anatomical sites for methicillin-resistant Staphylococcus aureus at admission to a teaching hospital. Infect Control Hosp Epidemiol. 2006;27:181–4.CrossRefPubMed
6.
go back to reference Matheson A, Christie P, Stari T, Kavanagh K, Gould IM, Masterton R, et al. Nasal swab screening for methicillin-resistant Staphylococcus aureus—how well does it perform? A cross-sectional study. Infect Control Hosp Epidemiol. 2012;33:803–8.CrossRefPubMed Matheson A, Christie P, Stari T, Kavanagh K, Gould IM, Masterton R, et al. Nasal swab screening for methicillin-resistant Staphylococcus aureus—how well does it perform? A cross-sectional study. Infect Control Hosp Epidemiol. 2012;33:803–8.CrossRefPubMed
7.
go back to reference Davis KA, Stewart JJ, Crouch HK, Florez CE, Hospenthal DR. Methicillin-resistant Staphylococcus aureus (MRSA) nares colonization at hospital admission and its effect on subsequent MRSA infection. Clin Infect Dis. 2004;39:776–82.CrossRefPubMed Davis KA, Stewart JJ, Crouch HK, Florez CE, Hospenthal DR. Methicillin-resistant Staphylococcus aureus (MRSA) nares colonization at hospital admission and its effect on subsequent MRSA infection. Clin Infect Dis. 2004;39:776–82.CrossRefPubMed
8.
go back to reference Levy SB, Marshall B. Antibacterial resistance worldwide: causes, challenges and responses. Nat Med. 2004;10:S122–9.CrossRefPubMed Levy SB, Marshall B. Antibacterial resistance worldwide: causes, challenges and responses. Nat Med. 2004;10:S122–9.CrossRefPubMed
9.
go back to reference Center for Disease Control and Prevention. Antibiotic resistance threats in the United States, 2013. U.S. Department of Health and Human Services; 2013. Center for Disease Control and Prevention. Antibiotic resistance threats in the United States, 2013. U.S. Department of Health and Human Services; 2013.
11.
go back to reference Cunningham-Rundles S, Ahrné S, Bengmark S, Johann-Liang R, Marshall F, Metakis L, et al. Probiotics and immune response. Am J Gastroenterol. 2000;95:S22–5.CrossRefPubMed Cunningham-Rundles S, Ahrné S, Bengmark S, Johann-Liang R, Marshall F, Metakis L, et al. Probiotics and immune response. Am J Gastroenterol. 2000;95:S22–5.CrossRefPubMed
12.
go back to reference Gill HS, Rutherfurd KJ. Immune enhancement conferred by oral delivery of lactobacillus rhamnosus HN001 in different milk-based substrates. J Dairy Res. 2001;68:611–6.CrossRefPubMed Gill HS, Rutherfurd KJ. Immune enhancement conferred by oral delivery of lactobacillus rhamnosus HN001 in different milk-based substrates. J Dairy Res. 2001;68:611–6.CrossRefPubMed
13.
go back to reference Gill HS, Rutherfurd KJ. Probiotic supplementation to enhance natural immunity in the elderly: effects of a newly characterized immunostimulatory strain lactobacillus rhamnosus HN001 (DR20™) on leucocyte phagocytosis. Nutr Res. 2001;21:183–9.CrossRef Gill HS, Rutherfurd KJ. Probiotic supplementation to enhance natural immunity in the elderly: effects of a newly characterized immunostimulatory strain lactobacillus rhamnosus HN001 (DR20™) on leucocyte phagocytosis. Nutr Res. 2001;21:183–9.CrossRef
14.
go back to reference Glück U, Gebbers J-O. Ingested probiotics reduce nasal colonization with pathogenic bacteria (Staphylococcus aureus, Streptococcus pneumoniae, and β-hemolytic streptococci). Am J Clin Nutr. 2003;77:517–20.CrossRefPubMed Glück U, Gebbers J-O. Ingested probiotics reduce nasal colonization with pathogenic bacteria (Staphylococcus aureus, Streptococcus pneumoniae, and β-hemolytic streptococci). Am J Clin Nutr. 2003;77:517–20.CrossRefPubMed
15.
go back to reference Ulluwishewa D, Anderson RC, McNabb WC, Moughan PJ, Wells JM, Roy NC. Regulation of tight junction permeability by intestinal bacteria and dietary components. J Nutr. 2011;141:769–76.CrossRefPubMed Ulluwishewa D, Anderson RC, McNabb WC, Moughan PJ, Wells JM, Roy NC. Regulation of tight junction permeability by intestinal bacteria and dietary components. J Nutr. 2011;141:769–76.CrossRefPubMed
16.
go back to reference Shu Q, Gill HS. Immune protection mediated by the probiotic lactobacillus rhamnosus HN001 (DR20™) against Escherichia coli O157:H7 infection in mice. FEMS Immunol Med Microbiol. 2002;34:59–64.PubMed Shu Q, Gill HS. Immune protection mediated by the probiotic lactobacillus rhamnosus HN001 (DR20™) against Escherichia coli O157:H7 infection in mice. FEMS Immunol Med Microbiol. 2002;34:59–64.PubMed
17.
go back to reference Gill HS, Rutherfurd KJ, Prasad J, Gopal PK. Enhancement of natural and acquired immunity by lactobacillus rhamnosus (HN001), lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019). Br J Nutr. 2000;83:167–76.CrossRefPubMed Gill HS, Rutherfurd KJ, Prasad J, Gopal PK. Enhancement of natural and acquired immunity by lactobacillus rhamnosus (HN001), lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019). Br J Nutr. 2000;83:167–76.CrossRefPubMed
18.
go back to reference Cross ML, Mortensen RR, Kudsk J, Gill HS. Dietary intake of lactobacillus rhamnosus HN001 enhances production of both Th1 and Th2 cytokines in antigen-primed mice. Med Microbiol Immunol (Berl). 2002;191:49–53.CrossRef Cross ML, Mortensen RR, Kudsk J, Gill HS. Dietary intake of lactobacillus rhamnosus HN001 enhances production of both Th1 and Th2 cytokines in antigen-primed mice. Med Microbiol Immunol (Berl). 2002;191:49–53.CrossRef
19.
go back to reference Sheih Y-H, Chiang B-L, Wang L-H, Liao C-K, Gill HS. Systemic immunity-enhancing effects in healthy subjects following dietary consumption of the lactic acid bacterium lactobacillus rhamnosus HN001. J Am Coll Nutr. 2001;20:149–56.CrossRefPubMed Sheih Y-H, Chiang B-L, Wang L-H, Liao C-K, Gill HS. Systemic immunity-enhancing effects in healthy subjects following dietary consumption of the lactic acid bacterium lactobacillus rhamnosus HN001. J Am Coll Nutr. 2001;20:149–56.CrossRefPubMed
20.
go back to reference Shu Q, Zhou JS, Rutherfurd KJ, Birtles MJ, Prasad J, Gopal PK, et al. Probiotic lactic acid bacteria (lactobacillus acidophilus HN017, lactobacillus rhamnosus HN001 and Bifidobacterium lactis HN019) have no adverse effects on the health of mice. Int Dairy J. 1999;9:831–6.CrossRef Shu Q, Zhou JS, Rutherfurd KJ, Birtles MJ, Prasad J, Gopal PK, et al. Probiotic lactic acid bacteria (lactobacillus acidophilus HN017, lactobacillus rhamnosus HN001 and Bifidobacterium lactis HN019) have no adverse effects on the health of mice. Int Dairy J. 1999;9:831–6.CrossRef
21.
go back to reference Zhou JS, Gopal PK, Gill HS. Potential probiotic lactic acid bacteria lactobacillus rhamnosus (HN001), lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019) do not degrade gastric mucin in vitro. Int J Food Microbiol. 2001;63:81–90.CrossRefPubMed Zhou JS, Gopal PK, Gill HS. Potential probiotic lactic acid bacteria lactobacillus rhamnosus (HN001), lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019) do not degrade gastric mucin in vitro. Int J Food Microbiol. 2001;63:81–90.CrossRefPubMed
22.
go back to reference Zhou JS, Shu Q, Rutherfurd KJ, Prasad J, Birtles MJ, Gopal PK, et al. Safety assessment of potential probiotic lactic acid bacterial strains lactobacillus rhamnosus HN001, Lb. acidophilus HN017, and Bifidobacterium lactis HN019 in BALB/c mice. Int. J. Food Microbiol. 2000;56:87–96.CrossRef Zhou JS, Shu Q, Rutherfurd KJ, Prasad J, Birtles MJ, Gopal PK, et al. Safety assessment of potential probiotic lactic acid bacterial strains lactobacillus rhamnosus HN001, Lb. acidophilus HN017, and Bifidobacterium lactis HN019 in BALB/c mice. Int. J. Food Microbiol. 2000;56:87–96.CrossRef
23.
go back to reference Sikorska H, Smoragiewicz W. Role of probiotics in the prevention and treatment of meticillin-resistant Staphylococcus aureus infections. Int J Antimicrob Agents. 2013;42:475–81.CrossRefPubMed Sikorska H, Smoragiewicz W. Role of probiotics in the prevention and treatment of meticillin-resistant Staphylococcus aureus infections. Int J Antimicrob Agents. 2013;42:475–81.CrossRefPubMed
24.
go back to reference Eggers S, Barker A, Valentine S, Hess T, Duster M, Safdar N. Impact of probiotics for reducing infections in veterans (IMPROVE): study protocol for a double-blind, randomized controlled trial to reduce carriage of Staphylococcus aureus. Contemp Clin Trials. 2016;52:39–45.CrossRefPubMedPubMedCentral Eggers S, Barker A, Valentine S, Hess T, Duster M, Safdar N. Impact of probiotics for reducing infections in veterans (IMPROVE): study protocol for a double-blind, randomized controlled trial to reduce carriage of Staphylococcus aureus. Contemp Clin Trials. 2016;52:39–45.CrossRefPubMedPubMedCentral
25.
go back to reference Safdar N, Narans L, Gordon B, Maki DG. Comparison of culture screening methods for detection of nasal carriage of methicillin-resistant Staphylococcus aureus: a prospective study comparing 32 methods. J Clin Microbiol. 2003;41:3163–6.CrossRefPubMedPubMedCentral Safdar N, Narans L, Gordon B, Maki DG. Comparison of culture screening methods for detection of nasal carriage of methicillin-resistant Staphylococcus aureus: a prospective study comparing 32 methods. J Clin Microbiol. 2003;41:3163–6.CrossRefPubMedPubMedCentral
26.
go back to reference Wormser GP, Stratton C. Manual of clinical microbiology, 9th edition. In: Murray PR, Baron EJ, Jorgensen JJ, Landry ML, Pfaller MA, editors. . 9th ed. Washington (DC): American Society of Microbiology; 2007. Wormser GP, Stratton C. Manual of clinical microbiology, 9th edition. In: Murray PR, Baron EJ, Jorgensen JJ, Landry ML, Pfaller MA, editors. . 9th ed. Washington (DC): American Society of Microbiology; 2007.
27.
go back to reference Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; 26th informational supplement. Wayne: Clinical and Laboratory Standards Institute; 2016. p. Report No.: M100–S26. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; 26th informational supplement. Wayne: Clinical and Laboratory Standards Institute; 2016. p. Report No.: M100–S26.
28.
go back to reference Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard. 10th ed. Wayne: Clinical and Laboratory Standards Institute; 2006. p. Report No.: CLSI M07–A10. Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard. 10th ed. Wayne: Clinical and Laboratory Standards Institute; 2006. p. Report No.: CLSI M07–A10.
29.
go back to reference Shenoy ES, Paras ML, Noubary F, Walensky RP, Hooper DC. Natural history of colonization with methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococcus (VRE): a systematic review. BMC Infect Dis. 2014;14:177.CrossRefPubMedPubMedCentral Shenoy ES, Paras ML, Noubary F, Walensky RP, Hooper DC. Natural history of colonization with methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococcus (VRE): a systematic review. BMC Infect Dis. 2014;14:177.CrossRefPubMedPubMedCentral
31.
go back to reference Yan M, Pamp SJ, Fukuyama J, Hwang PH, Cho DY, Holmes S, et al. Nasal microenvironments and interspecific interactions influence nasal microbiota complexity and S. Aureus carriage. Cell Host Microbe. 2013;14:631–40.CrossRefPubMedPubMedCentral Yan M, Pamp SJ, Fukuyama J, Hwang PH, Cho DY, Holmes S, et al. Nasal microenvironments and interspecific interactions influence nasal microbiota complexity and S. Aureus carriage. Cell Host Microbe. 2013;14:631–40.CrossRefPubMedPubMedCentral
32.
go back to reference Gueimonde M, Jalonen L, He F, Hiramatsu M, Salminen S. Adhesion and competitive inhibition and displacement of human enteropathogens by selected lactobacilli. Food Res Int. 2006;39:467–71.CrossRef Gueimonde M, Jalonen L, He F, Hiramatsu M, Salminen S. Adhesion and competitive inhibition and displacement of human enteropathogens by selected lactobacilli. Food Res Int. 2006;39:467–71.CrossRef
Metadata
Title
Effect of Lactobacillus rhamnosus HN001 on carriage of Staphylococcus aureus: results of the impact of probiotics for reducing infections in veterans (IMPROVE) study
Authors
Shoshannah Eggers
Anna K. Barker
Susan Valentine
Timothy Hess
Megan Duster
Nasia Safdar
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2018
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-018-3028-6

Other articles of this Issue 1/2018

BMC Infectious Diseases 1/2018 Go to the issue